Developing machine learning tools to understand transcriptional regulation in plants

Files

TR Number

Date

2019-09-09

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Abiotic stresses constitute a major category of stresses that negatively impact plant growth and development. It is important to understand how plants cope with environmental stresses and reprogram gene responses which in turn confers stress tolerance. Recent advances of genomic technologies have led to the generation of much genomic data for the model plant, Arabidopsis. To understand gene responses activated by specific external stress signals, these large-scale data sets need to be analyzed to generate new insight of gene functions in stress responses. This poses new computational challenges of mining gene associations and reconstructing regulatory interactions from large-scale data sets. In this dissertation, several computational tools were developed to address the challenges. In Chapter 2, ConSReg was developed to infer condition-specific regulatory interactions and prioritize transcription factors (TFs) that are likely to play condition specific regulatory roles. Comprehensive investigation was performed to optimize the performance of ConSReg and a systematic recovery of nitrogen response TFs was performed to evaluate ConSReg. In Chapter 3, CoReg was developed to infer co-regulation between genes, using only regulatory networks as input. CoReg was compared to other computational methods and the results showed that CoReg outperformed other methods. CoReg was further applied to identified modules in regulatory network generated from DAP-seq (DNA affinity purification sequencing). Using a large expression dataset generated under many abiotic stress treatments, many regulatory modules with common regulatory edges were found to be highly co-expressed, suggesting that target modules are structurally stable modules under abiotic stress conditions. In Chapter 4, exploratory analysis was performed to classify cell types for Arabidopsis root single cell RNA-seq data. This is a first step towards construction of a cell-type-specific regulatory network for Arabidopsis root cells, which is important for improving current understanding of stress response.

Description

Keywords

regulatory network, Machine learning, genomics

Citation