Understanding the Teaching and Learning Experience in Fundamental Engineering Courses
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Fundamental engineering courses are important to the undergraduate engineering student experience but have been associated with challenging educational environments. Several factors influence the educational environment, although learning experiences are primarily the outcome of interactions between instructors and students. To initiate change, it is important to understand teaching and learning experiences in fundamental engineering courses from the perspectives of the key players in these environments: instructors and students.
To accomplish the goal of understanding teaching and learning experiences, I conducted studies that examined instructors' and students' perspectives on their experiences and the educational environments, using qualitative research methodology. Through these studies, this dissertation: 1) examined instructors' beliefs and self-described behaviors, guided by motivation theory and focusing on the role of instructors as socializers in the learning process; 2) considered interacting fundamental engineering courses as a foundational curriculum within engineering curricula to describe the educational environment in these courses from instructors' perspectives; and 3) examined student perceptions of their learning experiences and the educational environments in fundamental engineering courses using responses to open-ended items in end-of-semester student evaluations of teaching surveys. Data indicate that participants strive to integrate strategies that promote effective learning despite challenges posed by course environments, although expected gains from these behaviors may not always be maximized. Students and instructors may benefit from a student-focused, collaborative and holistic course planning process that considers interacting fundamental courses as a foundational curriculum within engineering curricula, and that engages instructors as equal partners in the planning process. Student feedback may be infused into the course planning process by productively and meaningfully utilizing students' responses to end-of-semester student evaluations of teaching surveys. Overall, the results of this dissertation highlight the importance of institutional support, collaboration, and integrating student feedback in the quest for facilitating effective educational environments and positive learning experiences in engineering.