Identification of Unsteady Flight Dynamic Models and Model-based Wind Estimation with Flight Test Validation

TR Number

Date

2024-06-12

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Numerical weather modeling can benefit from improved wind sensing in the Earth's atmospheric boundary layer (ABL). Small, low-cost, uncrewed aircraft (drones) can be used to measure wind and a distribution of these vehicles could potentially provide measurements with much greater density and resolution, in both space and time, than current methods allow. To measure wind, a drone could be equipped with dedicated wind-measuring sensors, although these can be costly and obtrusive and must be carefully calibrated to account for interference effects. State estimation algorithms that combine a drone's operational measurements with a flight dynamic model can be used to infer wind without a dedicated wind sensor, although the sensor quality affects measurement accuracy. Previous studies have explored the effects of various sensors on wind estimate accuracy, but the effect of flight dynamic model fidelity has received less attention. This dissertation presents analysis of different aerodynamic model-free and model-based wind estimation methods, comparing six wind estimation formulations using experimental flight data from a small, fixed-wing aircraft. Each formulation is implemented using a Kalman filter, an extended Kalman filter, and an unscented Kalman filter. These filters are designed based on different assumptions related to the flight dynamic model, available sensors, and available measurements. Having identified a promising estimation approach, the dissertation next explores the value of incorporating unsteady effects into a flight dynamic model for model-based wind estimation. An unsteady aerodynamic model for a small, fixed-wing aircraft is developed, identified, and validated using experimental flight data. An extended Kalman filter is then designed and implemented for two motion models -- one that includes unsteady effects and another that does not. Analysis of the wind estimates and the estimation differences show that, while the unsteady flight dynamic model better predicts the aircraft motion, the value of incorporating this model for wind estimation is questionable.

Description

Keywords

Unsteady Flight Dynamics, Aircraft System Identification, Wind Estimation, small Uncrewed Aircraft Systems (UAS), small Unmanned Aircraft Systems (UAS)

Citation