Online Structural Change-point Detection of High-dimensional Streaming Data via Dynamic Sparse Subspace Learning
dc.contributor.author | Xu, Ruiyu | en |
dc.contributor.author | Wu, Jianguo | en |
dc.contributor.author | Yue, Xiaowei | en |
dc.contributor.author | Li, Yongxiang | en |
dc.date.accessioned | 2023-02-07T17:34:21Z | en |
dc.date.available | 2023-02-07T17:34:21Z | en |
dc.date.issued | 2022-03-30 | en |
dc.date.updated | 2023-02-05T03:28:50Z | en |
dc.description.abstract | High-dimensional streaming data are becoming increasingly ubiquitous in many fields. They often lie in multiple low-dimensional subspaces, and the manifold structures may change abruptly on the time scale due to pattern shift or occurrence of anomalies. However, the problem of detecting the structural changes in a real-time manner has not been well studied. To fill this gap, we propose a dynamic sparse subspace learning approach for online structural change-point detection of high-dimensional streaming data. A novel multiple structural change-point model is proposed and the asymptotic properties of the estimators are investigated. A tuning method based on Bayesian information criterion and change-point detection accuracy is proposed for penalty coefficients selection. An efficient Pruned Exact Linear Time based algorithm is proposed for online optimization and change-point detection. The effectiveness of the proposed method is demonstrated through several simulation studies and a real case study on gesture data for motion tracking. Supplementary materials for this article are available online. | en |
dc.description.version | Accepted version | en |
dc.format.extent | 14 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1080/00401706.2022.2046171 | en |
dc.identifier.eissn | 1537-2723 | en |
dc.identifier.issn | 0040-1706 | en |
dc.identifier.orcid | Yue, Xiaowei [0000-0001-6019-0940] | en |
dc.identifier.uri | http://hdl.handle.net/10919/113700 | en |
dc.language.iso | en | en |
dc.publisher | Taylor & Francis | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000777095200001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | High-dimensional time series | en |
dc.subject | Manifold learning | en |
dc.subject | Multiple change-point model | en |
dc.subject | Subspace clustering | en |
dc.subject | GRAPHICAL MODELS | en |
dc.subject | ALGORITHM | en |
dc.subject | SELECTION | en |
dc.subject | NETWORKS | en |
dc.title | Online Structural Change-point Detection of High-dimensional Streaming Data via Dynamic Sparse Subspace Learning | en |
dc.title.serial | Technometrics | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dcterms.dateAccepted | 2022-01-05 | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Industrial and Systems Engineering | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- J26-Online Structural Change Point Detection-Technometrics.pdf
- Size:
- 2.99 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version