Worlds Collide through Gaussian Processes: Statistics, Geoscience and Mathematical Programming

TR Number

Date

2023-05-04

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Gaussian process (GP) regression is the canonical method for nonlinear spatial modeling among the statistics and machine learning communities. Geostatisticians use a subtly different technique known as kriging. I shall highlight key similarities and differences between GPs and kriging through the use of large scale gold mining data. Most importantly GPs are largely hands-off, automatically learning from the data whereas kriging requires an expert human in the loop to guide analysis. To emphasize this, I show an imputation method for left censored values frequently seen in mining data. Oftentimes geologists ignore censored values due to the difficulty of imputing with kriging, but GPs execute imputation with relative ease leading to better estimates of the gold surface. My hope is that this research can serve as a springboard to encourage the mining community to consider using GPs over kriging for diverse utility after GP model fitting. Another common use of GPs that would be inefficient for kriging is Bayesian Optimization (BO). Traditionally BO is designed to find a global optima by sequentially sampling from a function of interest using an acquisition function. When two or more local or global optima of the function of interest have similar objective values, it often makes some sense to target the more "robust" solution with a wider domain of attraction. However, traditional BO weighs these solutions the same, favoring whichever has a slightly better objective value. By combining the idea of expected improvement (EI) from the BO community with mathematical programming's concept of an adversary, I introduce a novel algorithm to target robust solutions called robust expected improvement (REI). The adversary penalizes "peaked" areas of the objective function making those values appear less desirable. REI performs acquisitions using EI on the adversarial space yielding data sets focused on the robust solution that exhibit EI's already proven excellent balance of exploration and exploitation.

Description

Keywords

Kriging, Mining, Bayesian Optimization, Robust, Adversary

Citation