Spatial ecology and demography of eastern coyotes (Canis latrans) in western Virginia

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

Coyote (Canis latrans) range expansion in the Central Appalachian Mountains has stimulated interest in ecology of this predator and potential impacts to prey populations. This is particularly true in the Ridge and Valley Region in western Virginia where white-tailed deer (Odocoileus virginianus) populations are restricted by low nutritional carrying capacity and are subject to two other predators, bobcats (Lynx rufus) and American black bears (Ursus americanus), in addition to an active hunter community. I address two primary objectives of the Virginia Appalachian Coyote Study: to investigate 1) spatial ecology and 2) population dynamics of coyote populations in Bath and Rockingham counties. I deployed 21 GPS satellite collars on 19 coyotes over 32 months. I estimated home range size (mean = 13.46 km², range = 1.23 km² - 38.24 km²) across months using biased-random bridges and second-order habitat selection at four scales using eigenanalysis of selection ratios. I developed a metric to classify social status of individuals as either resident or transient based on stability of home range centers over time. I found evidence for class substructure for selection of territories where adult residents had a higher probability of mortality in high productivity/high risk habitats, compared to subadults and transients that were restricted to less productive habitats. I collected scat samples over five scat surveys across 2.5 years and extracted fecal DNA to identify individual coyotes in a mark-recapture framework. I estimated coyote densities in Bath (5.53 – 9.04 coyotes/100 km²) and Rockingham Counties (2.41 – 8.53 coyotes/100 km²) using a spatial capture-recapture model. Six-month apparent survival was lower in Bath County (ΦBath = 0.442, 0.259 – 0.643; ΦRockingham = 0.863, 0.269 – 0.991). The Bath County population demonstrated persistence despite high mortality and the Rockingham population demonstrated boundedness with recruitment inverse of changes in density. Findings at both sites suggest density-dependence, and tests of territoriality, presence of transients, and territory turnover demonstrate a capacity for immediate local immigration in response to high mortality in Bath County. I suggest that landscape-level habitat management may be a viable strategy to reduce potential conflicts with coyotes in the region.

Canis latrans, class structure, compensatory immigration, coyote, demography, density dependence, habitat selection, mortality, noninvasive genetics, optimal foraging theory, spatial capture-recapture, territoriality, transients