VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Estimation of Instantaneous Gas Exchange in Flow-Through Respirometry Systems: A Modern Revision of Bartholomew's Ztransform Method

TR Number

Date

2015-10-14

Journal Title

Journal ISSN

Volume Title

Publisher

PLOS

Abstract

Flow-through respirometry systems provide accurate measurement of gas exchange over long periods of time. However, these systems have limitations in tracking rapid changes. When an animal infuses a metabolic gas into the respirometry chamber in a short burst, diffusion and airflow in the chamber gradually alter the original signal before it arrives at the gas analyzer. For single or multiple bursts, the recorded signal is smeared or mixed, which may result in dramatically altered recordings compared to the emitted signal. Recovering the original metabolic signal is a difficult task because of the inherent ill conditioning problem. Here, we present two new methods to recover the fast dynamics of metabolic patterns from recorded data. We first re-derive the equations of the well-known Z-transform method (ZT method) to show the source of imprecision in this method. Then, we develop a new model of analysis for respirometry systems based on the experimentally determined impulse response, which is the response of the system to a very short unit input. As a result, we present a major modification of the ZT method (dubbed the ‘EZT method’) by using a new model for the impulse response, enhancing its precision to recover the true metabolic signals. The second method, the generalized Z-transform (GZT) method, was then developed by generalizing the EZT method; it can be applied to any flow-through respirometry system with any arbitrary impulse response. Experiments verified that the accuracy of recovering the true metabolic signals is significantly improved by the new methods. These new methods can be used more broadly for input estimation in variety of physiological systems.

Description

Keywords

Citation