On an Equivalence of Divisors on (M)over-bar(0,n) from Gromov-Witten Theory and Conformal Blocks

dc.contributor.authorChen, L.en
dc.contributor.authorGibney, A.en
dc.contributor.authorHeller, L.en
dc.contributor.authorKalashnikov, E.en
dc.contributor.authorLarson, H.en
dc.contributor.authorXu, W.en
dc.date.accessioned2024-02-19T20:09:39Zen
dc.date.available2024-02-19T20:09:39Zen
dc.date.issued2022-08-16en
dc.description.abstractWe consider a conjecture that identifies two types of base point free divisors on M ¯ ,n. The first arises from Gromov-Witten theory of a Grassmannian. The second comes from first Chern classes of vector bundles associated with simple Lie algebras in type A. Here we reduce this conjecture on M ¯ ,n to the same statement for n = 4. A reinterpretation leads to a proof of the conjecture on M ¯ ,n for a large class, and we give sufficient conditions for the non-vanishing of these divisors.en
dc.description.versionPublished versionen
dc.format.extent30 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1007/s00031-022-09752-6en
dc.identifier.eissn1531-586Xen
dc.identifier.issn1083-4362en
dc.identifier.orcidXu, Weihong [0000-0003-0990-5327]en
dc.identifier.urihttps://hdl.handle.net/10919/118054en
dc.language.isoenen
dc.publisherSpringeren
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectModuli of curvesen
dc.subjectCoinvariants and conformal blocksen
dc.subjectAffine Lie algebrasen
dc.subjectGromov-Witten invariantsen
dc.subjectEnumerative problemsen
dc.subjectSchubert calculusen
dc.subjectGrassmanniansen
dc.titleOn an Equivalence of Divisors on (M)over-bar(0,n) from Gromov-Witten Theory and Conformal Blocksen
dc.title.serialTransformation Groupsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherEarly Accessen
dc.type.otherJournalen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Mathematicsen
pubs.organisational-group/Virginia Tech/Post-docsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s00031-022-09752-6-2.pdf
Size:
935.25 KB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: