River-Floodplain Connectivity and Sediment Transport Potential: Applications to Sediment Dynamics on Floodplains and Juvenile Freshwater Mussel Settling in Rivers
dc.contributor.author | Sumaiya, FNU | en |
dc.contributor.committeechair | Czuba, Jonathan A. | en |
dc.contributor.committeemember | Strom, Kyle Brent | en |
dc.contributor.committeemember | Thompson, Theresa M. | en |
dc.contributor.committeemember | Hession, W. Cully | en |
dc.contributor.department | Biological Systems Engineering | en |
dc.date.accessioned | 2022-10-14T08:00:08Z | en |
dc.date.available | 2022-10-14T08:00:08Z | en |
dc.date.issued | 2022-10-13 | en |
dc.description.abstract | River-floodplain connectivity is the degree of water-driven transport of matter, energy, and organisms between rivers and their floodplains. Recent advancement of high-resolution lidar data and numerical modeling is helpful to explore river-floodplain connectivity precisely to improve our predictions of sediment transport and deposition on floodplains. In the present work, we studied floodplain sediment transport and deposition, and juvenile mussel settling in three river systems in the US. A two-dimensional hydrodynamic model was developed and simulated model results were coupled with field measurements to study river-floodplain systems of the East Fork White River in Indiana, South River in Virginia, and Dan River in North Carolina. Results show that the East Fork White River in Indiana is capable of supplying sand to the channels on the floodplain and these floodplain channels can transport sand in suspension and gravel as bedload. These floodplain channels are supply limited under the current hydrologic regime and identified as net erosional. On the South River floodplain in Virginia, incorporating hydrologic flowpaths as an explicit measure of river-floodplain connectivity can improve predictions of floodplain sediment deposition. Three regression models were developed incorporating flow pathways and the best model was applied to hydrodynamic model results to create a spatial map of floodplain sedimentation rate. The deposition map highlights how floodplain topography and river-floodplain connectivity affect sedimentation rates and can help inform the development of floodplain sediment budgets. Lastly, streamflow conditions were investigated in the Dan River, North Carolina as they affect juvenile freshwater mussel settling. Two uplooking velocity sensors on the river bed were deployed and hydraulic parameters were measured for a 7-mo period in May-November 2019 to estimate the juvenile mussel settling. Results show that juvenile freshwater mussels as large as 280-508 µm could always be suspended during our study period and not be able to settle onto the river bed at the location of our velocity sensors. Therefore, the flow and shear velocity during our study period was high enough to prohibit the recruitment of juvenile freshwater mussels from settling out of suspension at the sensor locations. Modest flow obstructions such as large boulders, downed trees, or large wood that create downstream wakes may be important features that provide suitable conditions for the settling of juvenile freshwater mussels onto the river bed. Furthermore, low flows have been increasing since the year 2000 which may be exacerbating the decline in freshwater mussel populations. | en |
dc.description.abstractgeneral | Human civilization has developed near rivers due to the wide range of benefits provided by rivers. Rivers provide food, water, and energy to more than 2.7 billion people around the world. However, the health of the rivers is degrading rapidly to meet the increasing demand of the growing population. We studied water, sediment, and mussel transport in the three rivers in the US: East Fork White River in Indiana, South River in Virginia, and Dan River in North Carolina. These rivers play an important role in agriculture, water supply, sediment, and nutrient transport of the surrounding environment. Our research work on East Fork White River in Indiana, USA shows that the area directly adjacent to the river is eroding, which is important information for river managers and policymakers. As part of that work, we identified the potential of various sizes of sediment to move over this area at different flows and developed a method to predict the largest sediment size that could be moved in water and hopping along the ground. This method is also applicable to other areas along rivers and the coast. We estimated the sediment deposition rate, deposition volume, and prepared a spatial map of the sediment deposition pattern for the South River floodplain in Virginia. From this map, deposition hot spots could be identified. We estimated that 66% of the sediment deposited adjacent to the South River was located in 32% of the area. This information will be helpful for understanding how sediment and sediment-associated pollutants deposit around rivers. Our work on the Dan River in North Carolina was focused on freshwater mussels. Our results showed that juvenile freshwater mussels could not have settled onto the river bed at the location of our measurements. Historical data reveal that freshwater mussels are declining at an alarming rate in that river, posing a threat to the river environment. We identified that streamflow has been increasing over the last two decades, which could be a potential cause of declining freshwater mussels. | en |
dc.description.degree | Doctor of Philosophy | en |
dc.format.medium | ETD | en |
dc.identifier.other | vt_gsexam:35657 | en |
dc.identifier.uri | http://hdl.handle.net/10919/112162 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | River-floodplain connectivity | en |
dc.subject | sediment transport | en |
dc.subject | numerical modeling | en |
dc.subject | and freshwater mussel | en |
dc.title | River-Floodplain Connectivity and Sediment Transport Potential: Applications to Sediment Dynamics on Floodplains and Juvenile Freshwater Mussel Settling in Rivers | en |
dc.type | Dissertation | en |
thesis.degree.discipline | Biological Systems Engineering | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Doctor of Philosophy | en |