Breaking the curse of dimensionality in electronic structure methods: towards optimal utilization of the canonical polyadic decomposition

TR Number

Date

2022-01-27

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Despite the fact that higher-order tensors (HOTs) plague electronic structure methods and severely limits the modeling of interesting chemistry problems, introduction and application of higher-order tensor (HOT) decompositions, specifically the canonical polyadic (CP) decomposition, is fairly limited. The CP decomposition is an incredibly useful sparse tensor factorization that has the ability to disentangle all correlated modes of a tensor. However the complexities associated with CP decomposition have made its application in electronic structure methods difficult.

Some of the major issues related to CP decomposition are a product of the mathematics of computing the decomposition: determining the exact CP rank is a non-polynomially hard problem, finding stationary points for rank-R approximations require non-linear optimization techniques, and inexact CP approximations can introduce a large degree of error into tensor networks. While other issues are a result of the construction of computer architectures. For example, computer processing units (CPUs) are organized in a way to maximize the efficiency of dense linear algebra and, thus, the performance of routine tensor algebra kernels, like the Khatri-Rao product, is limited. In this work, we seek to reduce the complexities associated with the CP decomposition and create a route for others to develop reduced-scaling electronic structure theory methods using the CP decomposition.

In Chapter 2, we introduce the robust tensor network approximation. This approximation is a way to, in general, eliminate the leading-order error associated with approximated tensors in a network. We utilize the robust network approximation to significantly increase the accuracy of approximating density fitting (DF) integral tensors using rank-deficient CP decompositions in the particle-particle ladder (PPL) diagram of the coupled cluster method with single and double substitutions (CCSD). We show that one can produce results with negligible error in chemically relevant energy differences using a CP rank roughly the same size as the DF fitting basis; which is a significantly smaller rank requirement than found using either a nonrobust approximation or similar grid initialized CP approximations (the pseudospectral (PS) and tensor hypercontraction (THC) approximations). Introduction of the CP approximation, formally, reduces the complexity of the PPL diagram from š“ž(Nā¶) to š“ž(Nāµ) and, using the robust approximation, we are able to observe a cost reduction in CCSD calculations for systems as small as a single water molecule.

In Chapter 3, we further demonstrate the utility of the robust network approximation and, in addition, we construct a scheme to optimize a grid-free CP decomposition of the order-four Coulomb integral tensor in š“ž(Nā“) time. Using these ideas, we reduce the complexity of ten bottleneck contractions from š“ž(Nā¶) to š“ž(Nāµ) in the Laplace transform (LT) formulation of the perturbative triple, (T), correction to CCSD. We show that introducing CP into the LT (T) method with a CP rank roughly the size of the DF fitting basis reduces the cost of computing medium size molecules by a factor of about 2.5 and introduces negligible error into chemically relevant energy differences. Furthermore, we implement these low-cost algorithms using newly developed, optimized tensor algebra kernels in the massively-parallel, block-sparse TiledArray [Calvin, et. al Chemical Reviews 2021 121 (3), 1203-1231] tensor framework.

Description

Keywords

Electronic Structure, Local Correlation, Canonical Polyadic Decomposition, Reduced-Scaling, Coupled Cluster Theory

Citation