Abacus-Tournament Models of Hall-Littlewood Polynomials

TR Number

Date

2016-01-08

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

In this dissertation, we introduce combinatorial interpretations for three types of HallLittlewood polynomials (denoted Rλ, Pλ, and Qλ) by using weighted combinatorial objects called abacus-tournaments. We then apply these models to give combinatorial proofs of properties of Hall-Littlewood polynomials. For example, we show why various specializations of Hall-Littlewood polynomials produce the Schur symmetric polynomials, the elementary symmetric polynomials, or the t-analogue of factorials. With the abacus-tournament model, we give a bijective proof of a Pieri rule for Hall-Littlewood polynomials that gives the Pλ-expansion of the product of a Hall-Littlewood polynomial Pµ with an elementary symmetric polynomial ek. We also give a bijective proof of certain cases of a second Pieri rule that gives the Pλ-expansion of the product of a Hall-Littlewood polynomial Pµ with another Hall-Littlewood polynomial Q(r) . In general, proofs using abacus-tournaments focus on canceling abacus-tournaments and then finding weight-preserving bijections between the sets of uncanceled abacus-tournaments.

Description

Keywords

Symmetric polynomials, Hall-Littlewood polynomials, abacus-tournaments, Pieri rules

Citation