VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Characterization of Biomedical and Incidental Nanoparticles in the Lungs and Their Effects on Health

TR Number

Date

2018-11-20

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Nanomaterials are defined as any material with at least one external dimension less than 100 nm. Recently, nanomaterials have become more common in medicine, technology, and engineering. One reason for their increased interest is due to nanomaterials having unique properties that allow them to interact effectively with biological systems. In terms of drug delivery, the lungs are a highly desirable site to administer therapeutic nanoparticles. Indeed, inflammatory diseases such as asthma and emphysema could potentially benefit from nanoparticle-mediated delivery. However, the lungs are also in constant contact with airborne particulate matter. Thus, harmful nanoparticles can enter the lungs and cause or even exacerbate inflammatory diseases. Our work focused on characterization of both therapeutic and potentially harmful nanoparticles in the lungs. We found that fluorescently-labeled nanoparticles were phagocytosed by macrophages and did not induce apoptosis or inflammation in the lungs, making them potentially useful as a therapeutic for inflammatory diseases. We also characterized a rare form of titanium-based particles called Magnéli phases, which have been shown to be produced via coal burning. We found that while these particles are non-inflammatory in the lungs of mice, they lead to apoptosis of macrophages as well as a change in gene expression associated with increased fibrosis. Ultimately, this was shown to lead to a decrease in lung function parameters and airway hyperresponsiveness, indicating increased lung stiffness after long-term nanoparticle exposure. Our data adds significant contributions to the field by assessing two nanoparticles with vastly different compositions in the lungs. Overall, we found that the unique properties of both particle types allows for interactions with cells and tissues. These interactions can have important outcomes on health, both in terms of disease treatment and exacerbation.

Description

Keywords

Nanoparticles, lung, inflammation, nanotoxicology

Citation