VTechWorks staff will be away for the Independence Day holiday from July 4-7. We will respond to email inquiries on Monday, July 8. Thank you for your patience.
 

Discovery of a Novel Microalgal Strain Scenedesmus Sp. A6 and Exploration of Its Potential as a Microbial Cell Factory

TR Number

Date

2018-08-14

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Microalgae are photosynthetic organisms considered to be one of the most promising high-value chemicals and biofuel-producing organisms. However, there are several challenges for the widespread implementation of industrial processes using microalgae. The work presented in this dissertation proposes solutions to the different challenges involving the use of microalgae as microbial cell factories. To investigate the application of anaerobic digestion as a way to generate nutrients for microbial growth, salmon offal was used as substrate for anaerobic digestion, and soil from a flooded run-off pond on the Virginia Tech campus in Blacksburg, VA. A fast reduction in volatile solids and the short-chain fatty acid production profile is favorable for the growth of microalgae. A novel algae strain Scenedesmus sp. A6 was isolated from a decorative waterfountain in a hotel in Madison, IN. Mixotrophic growth trials were conducted using wastewater from the salmon offal digestion, that demostrated the A6 isolate grows six times faster in the wastewater then autotrophically. Bioassays of ethanolic cell extracts of A6 cultures demonstrated antimicrobial activity against E. coli cells at concentrations above 50 µg/ml. Genome sequencing and assembly revealed multiple copies of genes involved with acetate and ammonia metabolism, and several genes involved with secondary metabolite synthesis. An alternative to the high capital investment of photobioreactors for the cultivation of microalgae is the use of open-source and open-hardware bioreactor controller. Here, the concept of an open-hardwate bioreactor control called ``BioBrain'' is introduced. The BioBrain device is based on the Arduino Mega micro-controller board, and is capable of monitoring and controlling culture conditions during simple strain characterization studies, with an estimated construction cost of less than $800 USD. Finally, a new primer design tool for the ligation-independant cloning technique 𝜆-PCR was developed called lambdaPrimeR. The contributions of this work are the discovery and development of different tools that can overcome the challenges of the use of microalgae as microbial cell factories in industrial processes.

Description

Keywords

Microalgae, Anaerobic digestion, Open-source hardware, Primer design tool

Citation