On the mixed-twist construction and monodromy of associated Picard-Fuchs systems
dc.contributor.author | Malmendier, Andreas | en |
dc.contributor.author | Schultz, Michael T. | en |
dc.date.accessioned | 2023-01-11T16:55:18Z | en |
dc.date.available | 2023-01-11T16:55:18Z | en |
dc.date.issued | 2022-01-01 | en |
dc.date.updated | 2023-01-11T01:38:08Z | en |
dc.description.abstract | We use the mixed-twist construction of Doran and Malmendier to obtain a multi-parameter family of K3 surfaces of Picard rank ρ ≥ 16. Upon identifying a particular Jacobian elliptic fibration on its general member, we determine the lattice polarization and the Picard-Fuchs system for the family. We construct a sequence of restrictions that lead to extensions of the polarization by twoelementary lattices. We show that the Picard-Fuchs operators for the restricted families coincide with known resonant hypergeometric systems. Second, for the one-parameter mirror families of deformed Fermat hypersurfaces we show that the mixed-twist construction produces a non-resonant GKZ system for which a basis of solutions in the form of absolutely convergent Mellin-Barnes integrals exists whose monodromy we compute explicitly | en |
dc.description.version | Accepted version | en |
dc.format.extent | Pages 459-513 | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.4310/CNTP.2022.v16.n3.a2 | en |
dc.identifier.eissn | 1931-4531 | en |
dc.identifier.issn | 1931-4523 | en |
dc.identifier.issue | 3 | en |
dc.identifier.uri | http://hdl.handle.net/10919/113128 | en |
dc.identifier.volume | 16 | en |
dc.language.iso | en | en |
dc.publisher | International Press of Boston | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.title | On the mixed-twist construction and monodromy of associated Picard-Fuchs systems | en |
dc.title.serial | Communications in Number Theory and Physics | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Journal Article | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Science | en |
pubs.organisational-group | /Virginia Tech/Science/Mathematics | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2108.06873.pdf
- Size:
- 564.56 KB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version