On the mixed-twist construction and monodromy of associated Picard-Fuchs systems

dc.contributor.authorMalmendier, Andreasen
dc.contributor.authorSchultz, Michael T.en
dc.date.accessioned2023-01-11T16:55:18Zen
dc.date.available2023-01-11T16:55:18Zen
dc.date.issued2022-01-01en
dc.date.updated2023-01-11T01:38:08Zen
dc.description.abstractWe use the mixed-twist construction of Doran and Malmendier to obtain a multi-parameter family of K3 surfaces of Picard rank ρ ≥ 16. Upon identifying a particular Jacobian elliptic fibration on its general member, we determine the lattice polarization and the Picard-Fuchs system for the family. We construct a sequence of restrictions that lead to extensions of the polarization by twoelementary lattices. We show that the Picard-Fuchs operators for the restricted families coincide with known resonant hypergeometric systems. Second, for the one-parameter mirror families of deformed Fermat hypersurfaces we show that the mixed-twist construction produces a non-resonant GKZ system for which a basis of solutions in the form of absolutely convergent Mellin-Barnes integrals exists whose monodromy we compute explicitlyen
dc.description.versionAccepted versionen
dc.format.extentPages 459-513en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.4310/CNTP.2022.v16.n3.a2en
dc.identifier.eissn1931-4531en
dc.identifier.issn1931-4523en
dc.identifier.issue3en
dc.identifier.urihttp://hdl.handle.net/10919/113128en
dc.identifier.volume16en
dc.language.isoenen
dc.publisherInternational Press of Bostonen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleOn the mixed-twist construction and monodromy of associated Picard-Fuchs systemsen
dc.title.serialCommunications in Number Theory and Physicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherJournal Articleen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Mathematicsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2108.06873.pdf
Size:
564.56 KB
Format:
Adobe Portable Document Format
Description:
Accepted version