A scoping review on examination approaches for identifying tactile deficits at the upper extremity in individuals with stroke

Abstract

Purpose: Accurate perception of tactile stimuli is essential for performing and learning activities of daily living. Through this scoping review, we sought to summarize existing examination approaches for identifying tactile deficits at the upper extremity in individuals with stroke. The goal was to identify current limitations and future research needs for designing more comprehensive examination tools.

Methods: A scoping review was conducted in accordance with the Joanna Briggs Institute methodological framework and the PRISMA for Scoping Reviews (PRISMA-ScR) guidelines. A database search for tactile examination approaches at the upper extremity of individuals with stroke was conducted using Medline (Ovid), The Cochrane Library (Wiley), CINAHL Plus with Full Text (Ebsco), Scopus (Elsevier), PsycInfo (Ebsco), and Proquest Dissertations and Theses Global. Original research and review articles that involved adults (18 years or older) with stroke, and performed tactile examinations at the upper extremity were eligible for inclusion. Data items extracted from the selected articles included: if the examination was behavioral in nature and involved neuroimaging, the extent to which the arm participated during the examination, the number of possible outcomes of the examination, the type(s) of tactile stimulation equipment used, the location(s) along the arm examined, the peripheral nerves targeted for examination, and if any comparison was made with the non-paretic arm or with the arms of individuals who are neurotypical.

Results: Twenty-two articles met the inclusion criteria and were accepted in this review. Most examination approaches were behavioral in nature and involved self-reporting of whether a tactile stimulus was felt while the arm remained passive (i.e., no volitional muscle activity). Typically, the number of possible outcomes with these behavioral approaches were limited (2-3), whereas the neuroimaging approaches had many more possible outcomes (> 15). Tactile examinations were conducted mostly at the distal locations along the arm (finger or hand) without targeting any specific peripheral nerve. Although a majority of articles compared paretic and non-paretic arms, most did not compare outcomes to a control group of individuals who are neurotypical.

Discussion: Our findings noted that most upper extremity tactile examinations are behavioral approaches, which are subjective in nature, lack adequate resolution, and are insufficient to identify the underlying neural mechanisms of tactile deficits. Also, most examinations are administered at distal locations of the upper extremity when the examinee’s arm is relaxed (passive). Further research is needed to develop better tactile examination tools that combine behavioral responses and neurophysiological outcomes, and allow volitional tactile exploration. Approaches that include testing of multiple body locations/nerves along the upper extremity, provide higher resolution of outcomes, and consider normative comparisons with individuals who are neurotypical may provide a more comprehensive understanding of the tactile deficits occurring following a stroke.

Description

Keywords

Citation

Journal of NeuroEngineering and Rehabilitation. 2024 Jun 08;21(1):99