Fast Detection of Transformed Data Leaks

dc.contributor.authorShu, Xiaokuien
dc.contributor.authorZhang, Jingen
dc.contributor.authorYao, Danfeng (Daphne)en
dc.contributor.authorFeng, Wu-chunen
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2017-03-17T08:35:23Zen
dc.date.available2017-03-17T08:35:23Zen
dc.date.issued2016-03-01en
dc.description.abstractThe leak of sensitive data on computer systems poses a serious threat to organizational security. Statistics show that the lack of proper encryption on files and communications due to human errors is one of the leading causes of data loss. Organizations need tools to identify the exposure of sensitive data by screening the content in storage and transmission, i.e., to detect sensitive information being stored or transmitted in the clear. However, detecting the exposure of sensitive information is challenging due to data transformation in the content. Transformations (such as insertion, deletion) result in highly unpredictable leak patterns. In this work, we utilize sequence alignment techniques for detecting complex data-leak patterns. Our algorithm is designed for detecting long and inexact sensitive data patterns. This detection is paired with a comparable sampling algorithm, which allows one to compare the similarity of two separately sampled sequences. Our system achieves good detection accuracy in recognizing transformed leaks. We implement a parallelized version of our algorithms in graphics processing unit that achieves high analysis throughput. We demonstrate the high multithreading scalability of our data leak detection method required by a sizable organization.en
dc.description.versionPublished versionen
dc.format.extent528 - 542 (15) page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1109/TIFS.2015.2503271en
dc.identifier.issn1556-6013en
dc.identifier.issue3en
dc.identifier.urihttp://hdl.handle.net/10919/76658en
dc.identifier.volume11en
dc.language.isoenen
dc.publisherIEEEen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000370732400006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectTechnologyen
dc.subjectComputer Science, Theory & Methodsen
dc.subjectEngineering, Electrical & Electronicen
dc.subjectComputer Scienceen
dc.subjectEngineeringen
dc.subjectData leak detectionen
dc.subjectcontent inspectionen
dc.subjectsamplingen
dc.subjectalignmenten
dc.subjectdynamic programmingen
dc.subjectparallelismen
dc.subjectALGORITHMen
dc.subjectALIGNMENTen
dc.subjectSEARCHen
dc.titleFast Detection of Transformed Data Leaksen
dc.title.serialIEEE Transactions On Information Forensics And Securityen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/Computer Scienceen
pubs.organisational-group/Virginia Tech/Faculty of Health Sciencesen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
shu-fast-detection-tifs15.pdf
Size:
2.54 MB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: