An On-Road Investigation of Commercial Motor Vehicle Operators and Self-Rating of Alertness and Temporal Separation as Indicators of Driver Fatigue

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


This on-road field investigation employed, for the first time, a completely automated, trigger-based data collection system capable of evaluating driver performance in an extended duration real-world commercial motor vehicle environment. The complexities associated with the development of the system, both technological and logistical and the necessary modifications to the plan of research are presented herein

This study, performed in conjunction with an on-going three year contract with the Federal Highway Administration, examined the use of self-rating of alertness and temporal separation (minimum time-to-collision, minimum headway, and mean headway) as indicators of driver fatigue. Without exception, the regression analyses for both the self-rating of alertness and temporal separation yielded models low in predictive ability; neither metric was found to be a valid indicator of driver fatigue. Various reasons for the failure of self-rating of fatigue as a valid measure are discussed. Dispersion in the data, likely due to extraneous (non-fatigue related) factors (e.g., other drivers) are credited with reducing the sensitivity of the temporal separation indicators.

Overall fatigue levels for all temporal separation incidents (those with a time-to-collision equal to or less than four seconds) were found to be significantly higher than for those randomly triggered incidents. On this basis, it is surmised that temporal separation may be a sensitive indicator for time-to-collision values greater than the 4-second criterion employed in this study.

Two unexpected relationships in the data are also discussed. A "wall" effect was found to exist for minimum time-to-collision values at 1.9 seconds. That is, none of the participants who participated in this research effort exhibited following behaviors with less than a 1.9-second time-to-collision criterion. In addition, based upon the data collected for this research, anecdotal evidence suggests that commercial motor vehicle operators do not appear to follow the standard progression of events associated with the onset of fatigue.



Time To Collision, Headway, PERCLOS, Observer Rating of Drowsiness, Human Factos, Vehicle-Based Automated Data Collection