VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

A High-quality Digital Library Supporting Computing Education: The Ensemble Approach

Files

TR Number

Date

2017-08-28

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Educational Digital Libraries (DLs) are complex information systems which are designed to support individuals' information needs and information seeking behavior. To have a broad impact on the communities in education and to serve for a long period, DLs need to structure and organize the resources in a way that facilitates the dissemination and the reuse of resources. Such a digital library should meet defined quality dimensions in the 5S (Societies, Scenarios, Spaces, Structures, Streams) framework - including completeness, consistency, efficiency, extensibility, and reliability - to ensure that a good quality DL is built.

In this research, we addressed both external and internal quality aspects of DLs. For internal qualities, we focused on completeness and consistency of the collection, catalog, and repository. We developed an application pipeline to acquire user-generated computing-related resources from YouTube and SlideShare for an educational DL. We applied machine learning techniques to transfer what we learned from the ACM Digital Library dataset. We built classifiers to catalog resources according to the ACM Computing Classification System from the two new domains that were evaluated using Amazon Mechanical Turk. For external qualities, we focused on efficiency, scalability, and reliability in DL services. We proposed cloud-based designs and applications to ensure and improve these qualities in DL services using cloud computing. The experimental results show that our proposed methods are promising for enhancing and enriching an educational digital library.

This work received support from ACM, as well as the National Science Foundation under Grant Numbers DUE-0836940, DUE-0937863, and DUE-0840719, and IMLS LG-71-16-0037-16.

Description

Keywords

Educational Digital Library, ACM Classification System, Amazon Mechanical Turk, Classification, Transfer learning, Active learning, YouTube, SlideShare, Digital Library Service Quality, Cloud Computing

Citation