Energy Harvesting from Human Body, Motion and Surroundings
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
As human dependence on electronic devices grows, there is an emerging need on finding sustainable power sources for low power electronics and sensors. One of the promising possibilities in this space is the human body itself. Harvesting significant power from daily human activities will have a transformative effect on wearables and implantables. One of the main challenges in harvesting mechanical energy from human actions is to ensure that there is no effect on the body itself. For this reason, any intrusive mechanism will not have practical relevance. In this dissertation, novel non-intrusive energy harvesting technologies are investigated that can capture available energy from body, motion, and surroundings.
Energy harvesting from the body is explored by developing a wrist-based thermoelectric harvester that can operate at low-temperature gradients. Energy harvesting from motion is investigated by creating a backpack and shoe sole. These devices passively store kinetic energy in a spring that is later released to a generator when it is not intrusive to the user kinematics. Lastly, energy harvesting from immediate surroundings is investigated by designing a two degree of freedom vibration absorber that is excited by electromagnetic fields found in common household appliances. These novel solutions are shown to provide consistent electrical power from wasted energy. Harvester designs are extensively modeled and optimized device architectures are manufactured and tested to quantify the relevant parameters such as output voltage and power density.