Generative Agent-Based Modeling: Unveiling Social System Dynamics through Coupling Mechanistic Models with Generative Artificial Intelligence
Files
TR Number
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We discuss the emerging new opportunity for building feedback-rich computational models of social systems using generative artificial intelligence. Referred to as Generative Agent-Based Models (GABMs), such individual-level models utilize large language models to represent human decision-making in social settings. We provide a GABM case in which human behavior can be incorporated in simulation models by coupling a mechanistic model of human interactions with a pre-trained large language model. This is achieved by introducing a simple GABM of social norm diffusion in an organization. For educational purposes, the model is intentionally kept simple. We examine a wide range of scenarios and the sensitivity of the results to several changes in the prompt. We hope the article and the model serve as a guide for building useful dynamic models of various social systems that include realistic human reasoning and decision-making.