Evaluation of liquefaction potential of silty sand based on Cone Penetration Test
dc.contributor.author | Rahardjo, Paulus P. | en |
dc.contributor.committeecochair | Brandon, Thomas L. | en |
dc.contributor.committeecochair | Clough, G. Wayne | en |
dc.contributor.committeemember | Duncan, J. Michael | en |
dc.contributor.committeemember | Kuppusamy, Thangavelu | en |
dc.contributor.committeemember | Smith, Charles W. | en |
dc.contributor.department | Civil Engineering | en |
dc.date.accessioned | 2015-06-29T22:06:50Z | en |
dc.date.available | 2015-06-29T22:06:50Z | en |
dc.date.issued | 1989 | en |
dc.description.abstract | Liquefaction ls a phenomenon where a saturated soil can temporarily lose its shear strength during an earthquake as a result of the development of excess pore pressures. For the past 25 years since Iiquefaction phenomenon was first explained, it was thought to be mainly a problem with clean sand, and most of the research has focused on these soils. However, as case history information has come to light, it has become apparent that silty sands are commonly involved, and in some cases even silts. This has generated a need for knowledge about the response of silty sands and silts under seismic loading. Related to this issue is the question of how best to determine the Iiquefaction resistance of these soils in a practical setting. This research has the objectives of providing an understanding of the behavior of saturated silty sands under seismic loading, and developing a rational basis for the use of the Cone Penetration Test (CPT) to predict Iiquefaction resistance in these materials. The study is primarily experimental, relying on laboratory and field testing and the use of a unique, large scale calibration chamber. The calibration chamber allows the field environment to be duplicated in the laboratory where conditions can be closely controlled and accurately defined. One of the first problems to be overcome in the research was to determine how to prepare specimens of silty sands that would reasonably duplicate field conditions in both the small scale of the conventional laboratory tests, and the large scale of the calibration chamber. Out of four different methods explored, consolidation from a slurry proved to be best. Two silty sands were located which had the desired characteristics for the study. Field work, involving both the Standard Penetration Test (SPT) and CPT was done as part of this investigation. The behavior of the silty sands were determined in the laboratory from monotonic and cyclic loading tests. The test results show that the effect of fines is to reduce the cone penetration resistance, but not to affect the liquefaction resistance. The steady state shear strength of the soils seems to be correlated to the cone tip resistance, however, this correlation shows a higher steady state shear strength than those back figured from case history data. The results were also used to define state parameters for both of the soils tested. The state parameter was found to be a reliable index to the liquefaction potential and further study in this area is recommended. | en |
dc.description.degree | Ph. D. | en |
dc.format.extent | xvii, 355 leaves | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.uri | http://hdl.handle.net/10919/53844 | en |
dc.language.iso | en_US | en |
dc.publisher | Virginia Polytechnic Institute and State University | en |
dc.relation.isformatof | OCLC# 20909340 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V856 1989.R353 | en |
dc.subject.lcsh | Soil liquefaction -- Research | en |
dc.title | Evaluation of liquefaction potential of silty sand based on Cone Penetration Test | en |
dc.type | Dissertation | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Civil Engineering | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1