Peptides can be utilized as amino acid sources for protein accretion and cell proliferation by cultured animal cells

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Twenty two methionine-containing di- to octa-peptides were evaluated for their ability to serve as methionine sources to support protein accretion and cell proliferation in C₂C₁₂ myogenic, MAC-T mammary epithelial and ovine myogenic satellite cells. Factors in serum that may be involved in regulating peptide utilization was investigated using MAC-T cells. Growth of MAC-T cells was studied in the presence of methionine-containing dipeptides with 6% desalted adult animal serum from chickens, horses, humans, pigs or rabbits. Serumal peptidase activities on the twenty two methionine-containing peptides were examined in cell-free, methionine-free Dulbecco’s modified Eagle’s medium supplemented with 6% fetal bovine serum. The cell cultures were incubated for 72 h at 37°C in a humidified environment of 90% air : 10% CO₂ for C₂C₁₂ and ovine satellite cells or 95% air : 5% CO₂ for MAC-T cells. The basal medium contained methionine-free Dulbecco’s modified Eagle’s medium supplemented with 6% desalted animal serum or one of the following serumal factors: .4% bovine serum lipids, 1% chemically defined lipid concentrate, bovine insulin (1 ug/mL), or 3% low protein serum replacement (LPSR-1). Treatment media tested included basal medium or basal media supplemented with L-methionine or one of the methionine-containing peptides. Cell cultures incubated with the basal media for 72 h were characterized by decreased cell number and decreased protein content compared with initial cultures. All the methionine-containing peptides (with the exception of glycylmethionine and prolylmethionine for C₂C₁₂ cells), regardles of chain length, were able to support protein accretion with responses ranging from 29 to 123% of that of free L-methionine. The DNA contents of ovine satellite cell cultures indicated that cell proliferation occurred in the presence of all the methionine-containing peptides with responses ranging from 45 to 144% of the L-methionine response. Bovine insulin and lipids were not effective in promoting peptide utilization by MAC-T cells. However, the LPSR-1 facilitated the utilization of methionine-containing peptides in C₂C₁₂ and MAC-T cells. In the cell-free, methionine-free Dulbecco’s modified Eagle’s medium, peptidases could release all the methionine residues from the tetra- to octapeptides during 24 h of incubation and 42 to 70% of the methionine residues from the di- and tripeptides tested. The results demonstrated that cultured animal cells possess the ability to utilize methionine-containing peptides as methionine sources for protein accretion and cell proliferation, but serumal peptidases are at least partially responsible for the observed responses.