Identification and control of lightly damped, large space structures: an experimental evaluation
dc.contributor.author | Berg, Joel Lea | en |
dc.contributor.committeechair | Norris, Mark L. | en |
dc.contributor.committeemember | Henneke, Edmund G. II | en |
dc.contributor.committeemember | Lindner, Douglas K. | en |
dc.contributor.committeemember | Meirovitch, Leonard | en |
dc.contributor.committeemember | Mook, Dean T. | en |
dc.contributor.committeemember | Burns, John A. | en |
dc.contributor.department | Engineering Science and Mechanics | en |
dc.date.accessioned | 2014-03-14T20:12:27Z | en |
dc.date.adate | 2007-05-22 | en |
dc.date.available | 2014-03-14T20:12:27Z | en |
dc.date.issued | 1992-07-10 | en |
dc.date.rdate | 2007-05-22 | en |
dc.date.sdate | 2007-05-22 | en |
dc.description.abstract | This dissertation concentrates on the three principal problems facing experimentalists during their attempts to identify and control lightly damped, large space structures (LSS). The problems are low damping, high modal density, and low natural frequencies of oscillation. They present a blend of difficulties which lead the experimentalist to turn to multiple-input multiple-output (MIMO) identification techniques and high performance compensators. Presented here are two MIMO modal identification techniques: Polyreference, and the Eigensystem Realization Algorithm, as well as two types of compensator-based controllers: Linear Quadratic Gaussian, and Independent Modal Space Control. The various techniques are described in the context of controlling lightly damped LSS. Because the research in this dissertation is primarily applications oriented, problems which experimentalists encounter in the laboratory are addressed as well as the performance of the different identification and control techniques on the test articles. Polyreference and ERA are both shown to perform very well in identifying modal frequencies while overestimating model damping ratios. Simulations show that high modal density combined with noisy data results in standard deviations that increase linearly with respect to mode separation. Pseudo- Inverse IMSC is shown to be robust with respect to system uncertainties. Block Independent Control is shown to possess minor coupling between blocks and provides a powerful control approach to overcome actuator bandwidth limitations. | en |
dc.description.degree | Ph. D. | en |
dc.format.extent | xx, 272 leaves | en |
dc.format.medium | BTD | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.other | etd-05222007-091357 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-05222007-091357/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/27844 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech | en |
dc.relation.haspart | LD5655.V856_1992.B398.pdf | en |
dc.relation.isformatof | OCLC# 26812763 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V856 1992.B398 | en |
dc.subject.lcsh | Damping (Mechanics) | en |
dc.subject.lcsh | Large space structures (Astronautics) | en |
dc.title | Identification and control of lightly damped, large space structures: an experimental evaluation | en |
dc.type | Dissertation | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Engineering Science and Mechanics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- LD5655.V856_1992.B398.pdf
- Size:
- 10.04 MB
- Format:
- Adobe Portable Document Format
- Description: