VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

TLR-4 and Sustained Calcium Agonists Synergistically Produce Eicosanoids Independent of Protein Synthesis in RAW264.7 Cells

dc.contributor.authorBuczynski, Matthew W.en
dc.contributor.authorStephens, Daren L.en
dc.contributor.authorBowers-Gentry, Rebecca C.en
dc.contributor.authorGrkovich, Andrejen
dc.contributor.authorDeems, Raymond A.en
dc.contributor.authorDennis, Edward A.en
dc.contributor.departmentSchool of Neuroscienceen
dc.date.accessioned2017-01-14T04:42:08Zen
dc.date.available2017-01-14T04:42:08Zen
dc.date.issued2007-08-03en
dc.description.abstractArachidonic acid is released by phospholipaseA2 and converted into hundreds of distinct bioactive mediators by a variety of cyclooxygenases (COX), lipoxygenases (LO), and cytochrome P450s. Because of the size and diversity of the eicosanoid class of signaling molecules produced, a thorough and systematic investigation of these biological processes requires the simultaneous quantitation of a large number of eicosanoids in a single analysis. We have developed a robust liquid chromatography/tandem mass spectrometry method that can identify and quantitate over 60 different eicosanoids in a single analysis, and we applied it to agonist stimulated RAW264.7 murine macrophages. Fifteen different eicosanoids produced through COX and 5-LO were detected either intracellularly or in the media following stimulation with 16 different agonists of Toll-like receptors (TLR), G protein-coupled receptors, and purinergic receptors. No significant differences in the COX metabolite profiles were detected using the different agonists; however, we determined that only agonists creating a sustained Ca2<sup>2+</sup> influx were capable of activating the 5-LO pathway in these cells. Synergy between Ca2<sup>2+</sup> and TLR pathways was detected and discovered to be independent of NF-κB-induced protein synthesis. This demonstrates that TLR induction of protein synthesis and priming for enhanced phospholipase A<sub>2</sub>-mediated eicosanoid production work through two distinct pathways.en
dc.description.versionPublished versionen
dc.format.extent22834 - 22847 page(s)en
dc.identifier.doihttps://doi.org/10.1074/jbc.M701831200en
dc.identifier.eissn1083-351Xen
dc.identifier.issn0021-9258en
dc.identifier.issue31en
dc.identifier.urihttp://hdl.handle.net/10919/74311en
dc.identifier.volume282en
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.titleTLR-4 and Sustained Calcium Agonists Synergistically Produce Eicosanoids Independent of Protein Synthesis in RAW264.7 Cellsen
dc.title.serialJournal of Biological Chemistryen
dc.typeArticle - Refereeden
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMID_17535806.pdf
Size:
892.35 KB
Format:
Adobe Portable Document Format
Description:
Publisher's Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: