Revisiting the Neyman-Scott model: an Inconsistent MLE or an Ill-defined Model?
dc.contributor.author | Spanos, Aris | en |
dc.contributor.department | Economics | en |
dc.date.accessioned | 2017-03-13T19:08:16Z | en |
dc.date.available | 2017-03-13T19:08:16Z | en |
dc.date.issued | 2013-01-26 | en |
dc.description.abstract | The Neyman and Scott (1948) model is widely used to demonstrate a serious weakness of the Maximum Likelihood (ML) method: it can give rise to inconsistent estimators. The primary objective of this paper is to revisit this example with a view to demonstrate that the culprit for the inconsistent estimation is not the ML method but an ill-defined statistical model. It is also shown that a simple recasting of this model renders it well-defined and the ML method gives rise to consistent and asymptotically efficient estimators. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.uri | http://hdl.handle.net/10919/76644 | en |
dc.language.iso | en | en |
dc.relation.uri | http://arxiv.org/abs/1301.6278v1 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | stat.ME | en |
dc.title | Revisiting the Neyman-Scott model: an Inconsistent MLE or an Ill-defined Model? | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Science | en |
pubs.organisational-group | /Virginia Tech/Science/COS T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Science/Economics | en |