Synthesis and Characterization of Novel Pol(arylene ethers) for Gas Separation and Water Desalination Membranes
dc.contributor.author | Narang, Gurtej Singh | en |
dc.contributor.committeechair | Riffle, Judy S. | en |
dc.contributor.committeemember | Edgar, Kevin J. | en |
dc.contributor.committeemember | Freeman, Benny Dean | en |
dc.contributor.committeemember | Davis, Richey M. | en |
dc.contributor.committeemember | Turner, S. Richard | en |
dc.contributor.department | Chemistry | en |
dc.date.accessioned | 2019-12-12T07:01:00Z | en |
dc.date.available | 2019-12-12T07:01:00Z | en |
dc.date.issued | 2018-06-19 | en |
dc.description.abstract | This thesis focuses on the synthesis and characterization of various poly(arylene ether)s to improve the efficiency of gas separation and water desalination membranes. This class of polymers includes polymers such as poly(arylene ether sulfone), poly(arylene ether ketone) and poly(phenylene oxide) which offer excellent thermal and mechanical stability and usually have high enough rigidity to support gas separation and water desalination operations. Besides the plethora of properties offered by the homopolymers, these polymers can also be post-modified to cater to specific needs. For example, the polyphenylene oxides have been brominated to increase the permeability for gas separation applications. Blending is another viable method to impart desirable properties to polymers. Bisphenol A based poly(arylene ether ketone) (BPAPAEK) has been blended with commercially available poly(2,6-dimethylphenylene oxide)s (PPO) of different molecular weights in a fixed ratio (66/34 wt/wt) and in various ratios of a 22000 g/mol PPO. All the blends were UV crosslinked to minimize plasticization by condensable gases and analyzed for gel fractions, whereas, only the 22,000 g/mol blends were tested for transport properties since they yielded the highest gel fractions and exhibited the best mechanical properties. The crosslinking reduced the free volume and improved the selectivity with some drop in permeability. The blends with 90% of the 22000 g/mol PPO by weight was plotted closest to the upperbound. A phosphine oxide based poly(arylene ether ketone) (POPAEK) was blended with the various PPOs in a similar manner. The results were compared to the BPAPAEK based blends in terms of miscibility behavior and transport properties. It was found that the POPAEK based blends had higher permeability due to the higher fractional free volumes of the POPAEK. The POPAEK was more compatible with the PPOs than BPAPAEK as seen by analyzing various blend permeability models, mechanical properties and scanning electron microscope images. Moreover, blends with both the PAEKs displayed only a small drop in mechanical properties, such as the Young's modulus and the yield strength in comparison to the parent polymers. Hydroquinone based poly(arylene ether sulfone) oligomers were synthesized, post-sulfonated and chemically crosslinked to determine the effect of water uptake, fixed charge concentration and block length of oligomers on the salt permeability and the hydrated mechanical properties of the networks. The sulfonic acid groups were placed strategically and quantitatively on the hydroquinone units. The strategic placement of the acid groups may help in maintaining high rejection of monovalent ions in the presence of divalent ions, as shown in unpublished work by our group. It was found that the water uptake and fixed charge density had the opposite effects on the salt permeability. Also, the salt permeability varied differently for 5000g/mol and 10000g/mol block based networks. Another polymer that was investigated in this thesis was poly(2-ethyl-2-oxazoline) (PEtOx). An elaborate account of synthesis of monofunctional, heterobifunctional and telechelic poly(2-ethyl-2-oxazoline)s using different initiators including methyl triflate, activated alkyl halides (e.g., benzyl halides), and non-activated alkyl halides has been presented in this thesis. Endgroup functionalities and molecular weight distributions were studied by SEC, 1H NMR and titrations. The oligomers initiated with the benzyl or xylyl chloride had a PDI of 1.3-1.4 which is broader than expected for a living cationic ring opened polymer. This was attributed to the participation of covalent species which propagated slowly in the activated halide reactions. These oligomers were quantitatively terminated as proven by NMR and titrations. Due to the molecular weight distributions and quantitative termination these oligomers were deemed to be desirable for drug delivery applications. | en |
dc.description.abstractgeneral | This work pivots around the synthesis and characterization of different classes of polymers which are long molecules made by joining small molecules. The structure-property relationships of different polymers with respect to applications such as gas separation, water desalination and drug delivery were examined. The first two projects were focused of gas separation applications. Gas separation is an essential process used to recover the required gas from a mixture of gases. This process is used in a number of industries such as natural gas, hydrogen recovery and air dehumidification. In these projects, gas separation membranes were used to remove non combustible components of natural gas such as carbon dioxide and hydrogen sulfide. Two different types of poly(arylene ether ketone)s (PAEKs) (a kind of polymer) were blended with a commercial polymer called poly(phenylene oxide) (PPO) and crosslinked at the surfaces to improve the gas transport properties of the commercial polymer. PPOs have high gas permeability and a low selectivity. In other words even though the PPO membranes would alow the gasses to pass through easily, the efficiency of gas separation would be low. The blending with the PAEKs improved the selectivity of the PPOs without much loss in throughput. These blends of the two different PAEKs were compared for transport and other relavent properties. It was found that the transport properties of the commercial polymer were improved markedly without much loss in mechanical properties which are usually sacrificed upon blending of two uncomaptible polymers. Water desalination applications were looked into for a polymer class called polysulfones. About 40% of the world’s population lives in water stressed areas. In order to address the water crisis, there is a need to look beyond primitive methods such as distillation which are inefficient. Hence, the polymeric membrane separations which do not involve phase change (eg liquid to gas and then back to liquid in distillation) were examined. The currently used polyamide membranes have a rough surface because of the way they are made, making them prone to deposition of salt and organic matter. This deposition makes them inefficient. They are also prone to degradation by chlorine. The polysulfones membranes have a smoother surface less prone to these depositions. Their resistance to chlorine makes them more viable for water desalination applications. The polysulfones were post modified to introduce charges to make them more suitable for water desalination purposes. The charges repelled the ions of same polarity and made the polymer more hydrophilic. However, as the number of charges increased, the water uptake of the polymer increased which resulted in a decrease in the effectiveness of salt /ion rejection. To increase the charge density of the polymers by (the effectiveness of ion rejection), the polymer chains were crosslinked at the ends. For deleniating the structure property relationships, the amount of charges were varied and two sets of chain lengths were studied. The salt permeability decreased with increase in fixed charge concentration and decrease in water uptake. Poly(2-Oxazolines), were investigated as potential drug delivery vehicles. Polymeric drug delivery vehicles have been used to control the rate of release of drugs in the body to avoid side effects. Another advantage of polymeric drug delivery systems is making the water insoluble drugs more compatible with the fluids in the body. Currently, polyethylene oxides are being used as drug delivery vehicles. However, these polymers have been known to produce antibodies in some people. In this work, poly(2-oxazolines) which are known to be more compatible with human body than PEOs were prepared using different initiators and end cappers to prepare an elaborate repertoire of controlled molecular weight and controlled functionality oligomers for further modification. | en |
dc.description.degree | PHD | en |
dc.format.medium | ETD | en |
dc.identifier.other | vt_gsexam:13131 | en |
dc.identifier.uri | http://hdl.handle.net/10919/95968 | en |
dc.publisher | Virginia Tech | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | gas separation | en |
dc.subject | water desalination | en |
dc.subject | electrodialysis | en |
dc.subject | poly(arylene ether ketone) | en |
dc.subject | phosphine oxide | en |
dc.subject | poly(2 | en |
dc.subject | 6 dimethylphenylene oxide) | en |
dc.subject | polymer blends | en |
dc.subject | UV crosslinking | en |
dc.subject | poly(phenylene ether sulfone) | en |
dc.subject | post sulfonation | en |
dc.subject | fixed charge concentration | en |
dc.title | Synthesis and Characterization of Novel Pol(arylene ethers) for Gas Separation and Water Desalination Membranes | en |
dc.type | Dissertation | en |
thesis.degree.discipline | Macromolecular Science and Engineering | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | PHD | en |