ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra

dc.contributor.authorHinkelmann, Franziskaen
dc.contributor.authorBrandon, Madisonen
dc.contributor.authorGuang, Bonnyen
dc.contributor.authorMcNeill, Rustinen
dc.contributor.authorBlekherman, Grigoriyen
dc.contributor.authorVeliz-Cuba, Alanen
dc.contributor.authorLaubenbacher, Reinhard C.en
dc.contributor.departmentMathematicsen
dc.contributor.departmentFralin Life Sciences Instituteen
dc.date.accessioned2012-08-24T11:01:27Zen
dc.date.available2012-08-24T11:01:27Zen
dc.date.issued2011-07-20en
dc.date.updated2012-08-24T11:01:27Zen
dc.description.abstractBackground Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationBMC Bioinformatics. 2011 Jul 20;12(1):295en
dc.identifier.doihttps://doi.org/10.1186/1471-2105-12-295en
dc.identifier.urihttp://hdl.handle.net/10919/18799en
dc.language.isoenen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.holderFranziska Hinkelmann et al.; licensee BioMed Central Ltd.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebraen
dc.title.serialBMC Bioinformaticsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1471-2105-12-295.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: