A Real-time Management of Distribution Voltage Fluctuations due to High Solar Photovoltaic (PV) Penetrations

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

Due to the rapid growth of grid-tied solar photovoltaic (PV) systems in the generation mix, the distribution grid will face complex operational challenges. High PV penetration can create overvoltages and voltage fluctuations in the network, which are major concerns for the grid operator. Traditional voltage control devices like switched capacitor banks or line voltage regulators can alleviate slow-moving fluctuations, but these devices need to operate more frequently than usual when PV generation fluctuates due to fast cloud movements. Such frequent operations will impact the life expectancy of these voltage control devices.

Advanced PV inverter functionalities enable solar PV systems to provide reliable grid support through controlled real injection and/or reactive power compensation. This dissertation proposes a voltage regulation technique to mitigate probable impacts of high PV penetrations on the distribution voltage profile using smart inverter functionalities. A droop-based reactive power compensation method with active power curtailment is proposed, which uses the local voltage regulation at the inverter end. This technique is further augmented with very short-term PV generation forecasts. A hybrid forecasting algorithm is proposed here which is based on measurement-dependent dynamic modeling of PV systems using the Kalman Filter theory. Physical modeling of the PV system is utilized by this forecasting algorithm. Because of the rise in distributed PV systems, modeling of geographic dispersion is also addressed under PV system modeling.

The proposed voltage regulation method is coordinated with existing voltage regulator operations to reduce required number of tap-change operations. Control settings of the voltage regulators are adjusted to achieve minimal number of tap-change operations within a predefined time window. Finally, integration of energy storage is studied to highlight the value of the proposed voltage regulation technique vis-à-vis increased solar energy use.

Solar photovoltaic (PV) system, High PV penetration, Distribution voltage regulation, Solar generation forecasting, Active power curtailment