Solution Representation and Indentification for Singular neutral Functional Differential Equations

dc.contributor.authorCerezo, Graciela M.en
dc.contributor.committeechairHerdman, Terry L.en
dc.contributor.committeememberBurns, John A.en
dc.contributor.committeememberCliff, Eugene M.en
dc.contributor.committeememberBorggaard, Jeffrey T.en
dc.contributor.committeememberRussell, David L.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2014-03-14T20:21:32Zen
dc.date.adate1996-12-06en
dc.date.available2014-03-14T20:21:32Zen
dc.date.issued1996-12-06en
dc.date.rdate1996-12-06en
dc.date.sdate1998-07-12en
dc.description.abstractThe solutions for a class of Neutral Functional Di erential Equations (NFDE) with weakly singular kernels are studied. Using singular expansion techniques, a representation of the solution of the NFDE is obtained by studing an associated Volterra Integral Equation. We study the Collocation Method as a projection method for the approximation of solutions for Volterra Integral Equations. Particulary, the possibility of achieving higher order ap- proximations is discussed. Special attention is given to the choice of the projection space and its relation to the smoothness of the approximated solution. Finally, we study the identification problem for a parameter appearing in the weakly singular operator of the NFDE.en
dc.description.degreePh. D.en
dc.identifier.otheretd-2455212097410en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-2455212097410/en
dc.identifier.urihttp://hdl.handle.net/10919/30365en
dc.publisherVirginia Techen
dc.relation.haspartetd.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectintegral equationsen
dc.subjectneutral functional differential equationsen
dc.subjectparameter identificationen
dc.subjectcollocation methoden
dc.titleSolution Representation and Indentification for Singular neutral Functional Differential Equationsen
dc.typeDissertationen
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
etd.pdf
Size:
632.24 KB
Format:
Adobe Portable Document Format