VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Using sensitivity analyses to understand bistable system behavior

dc.contributor.authorSreedharan, Vandanaen
dc.contributor.authorBhalla, Upinder S.en
dc.contributor.authorRamakrishnan, Narenen
dc.date.accessioned2023-04-10T13:45:15Zen
dc.date.available2023-04-10T13:45:15Zen
dc.date.issued2023-04-06en
dc.date.updated2023-04-09T03:09:52Zen
dc.description.abstractBackground Bistable systems, i.e., systems that exhibit two stable steady states, are of particular interest in biology. They can implement binary cellular decision making, e.g., in pathways for cellular differentiation and cell cycle regulation. The onset of cancer, prion diseases, and neurodegenerative diseases are known to be associated with malfunctioning bistable systems. Exploring and characterizing parameter spaces in bistable systems, so that they retain or lose bistability, is part of a lot of therapeutic research such as cancer pharmacology. Results We use eigenvalue sensitivity analysis and stable state separation sensitivity analysis to understand bistable system behaviors, and to characterize the most sensitive parameters of a bistable system. While eigenvalue sensitivity analysis is an established technique in engineering disciplines, it has not been frequently used to study biological systems. We demonstrate the utility of these approaches on a published bistable system. We also illustrate scalability and generalizability of these methods to larger bistable systems. Conclusions Eigenvalue sensitivity analysis and separation sensitivity analysis prove to be promising tools to define parameter design rules to make switching decisions between either stable steady state of a bistable system and a corresponding monostable state after bifurcation. These rules were applied to the smallest two-component bistable system and results were validated analytically. We showed that with multiple parameter settings of the same bistable system, we can design switching to a desirable state to retain or lose bistability when the most sensitive parameter is varied according to our parameter perturbation recommendations. We propose eigenvalue and stable state separation sensitivity analyses as a framework to evaluate large and complex bistable systems.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationBMC Bioinformatics. 2023 Apr 06;24(1):136en
dc.identifier.doihttps://doi.org/10.1186/s12859-023-05206-2en
dc.identifier.urihttp://hdl.handle.net/10919/114449en
dc.language.isoenen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.holderThe Author(s)en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleUsing sensitivity analyses to understand bistable system behavioren
dc.title.serialBMC Bioinformaticsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
12859_2023_Article_5206.pdf
Size:
3.16 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: