Scalable Combinatorial Algorithms for Optimal Transport Based Similarity Metrics
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Optimal Transport (OT), also known as Wasserstein distance, is a valuable metric for comparing probability distributions. Owing to its appealing statistical properties, researchers in various fields, such as machine learning, use OT within applications. However, computing both exact and approximate OT is computationally expensive and impractical for large datasets. Furthermore, OT is sensitive to small noise in the input distributions. In this document, we propose to use combinatorial methods to design scalable and noise-resistant solutions for OT.
We present four key contributions in this work. First, we introduce a novel combinatorial parallel algorithm for approximating OT, which achieves a parallel time complexity of