A general Metal-Ion-Modification route for preparing hydrophobic paper and tableware from lignocellulose fibers
dc.contributor.author | Nayanathara, R. M. Oshani | en |
dc.contributor.author | Leng, Weiqi | en |
dc.contributor.author | Liyanage, Senal D. | en |
dc.contributor.author | Wang, Xiang | en |
dc.contributor.author | Wang, Lu | en |
dc.contributor.author | Wang, Jinwu | en |
dc.contributor.author | Tian, Zhenhua | en |
dc.contributor.author | Pittman, Charles U. | en |
dc.contributor.author | Gwaltney, Steven R. | en |
dc.contributor.author | Zhang, Xuefeng | en |
dc.date.accessioned | 2023-05-23T14:36:43Z | en |
dc.date.available | 2023-05-23T14:36:43Z | en |
dc.date.issued | 2023-03 | en |
dc.description.abstract | Inherent hydrophilicity and poor water resistance prevent using lignocellulosic materials as green plastic al- ternatives to fossil fuel-based plastics. Here, we report a facile metal-ion-modification (MIM) route, swelling with aqueous metal ion solutions, and drying to convert conventional hydrophilic paper and wood pulp into biode- gradable hydrophobic paper and tableware without the addition of hydrophobic sizing chemicals/materials. Metal ions such as Fe3+ and Zr4+ can coordinate with pulp fibers' polar groups (i.e., OH, C-O, and COOH) that induce self-assembly of their surface fibrillated "hairy" cellulose nanofibrils to form a more compact structure with fewer available OH groups for water sorption. This decreases the surface energy of pulp fibers and increases their hydrophobicity and water resistance. Only similar to 3 mg of metal ions is needed to induce the wettability tran- sition in 1 g of kraft pulp, resulting in hydrophobic paper and tableware with water contact angles (WCAs) of 120-140 degrees. The coordinated Fe3+ and Zr4+ are stable, with negligible metal leaching during use, allowing the hydrophobic paper and tableware to be used for food packaging. This MIM technique can be integrated into the existing paper-making process for the scalable production of hydrophobic papers and tableware, providing an alternative route for developing sustainable and biodegradable plastic counterparts. | en |
dc.description.admin | Public domain – authored by a U.S. government employee | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1016/j.cej.2023.141596 | en |
dc.identifier.eissn | 1873-3212 | en |
dc.identifier.issn | 1385-8947 | en |
dc.identifier.uri | http://hdl.handle.net/10919/115154 | en |
dc.identifier.volume | 459 | en |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.rights | Public Domain (U.S.) | en |
dc.rights.uri | http://creativecommons.org/publicdomain/mark/1.0/ | en |
dc.subject | Lignocellulose fibers | en |
dc.subject | Metal-ion-modification | en |
dc.subject | Hydrophobization | en |
dc.subject | Water-resistant | en |
dc.subject | Paper tableware | en |
dc.title | A general Metal-Ion-Modification route for preparing hydrophobic paper and tableware from lignocellulose fibers | en |
dc.title.serial | Chemical Engineering Journal | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S1385894723003273-main.pdf
- Size:
- 14.08 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version