Minimum bias designs for an exponential response

dc.contributor.authorManson, Allison Rayen
dc.contributor.departmentStatisticsen
dc.date.accessioned2020-12-14T17:35:57Zen
dc.date.available2020-12-14T17:35:57Zen
dc.date.issued1965en
dc.description.abstractFor the exponential response η<sub>u</sub> = α + βe<sup>γZ<sub>u</sub></sup> (u = 1,2,…,N) where α and β lie on the real line (-∞,∞), and γ is a positive integer; the designs are given which minimize the bias due to the inherent inability of the approximation function ŷ<sub>u</sub> = Σ<sub>j=0</sub><sup>d</sub>b<sub>j</sub>e<sup>jZ<sub>u</sub></sup> to fit such a model. Transformation to η<sub>u</sub> = α + βx<sub>u</sub><sup>γ</sup> and ŷ<sub>u</sub> = Σ<sub>j=0</sub><sup>d</sub>b<sub>j</sub>x<sub>u</sub><sup>j</sup> facilitates the solution for minimum bias designs. The requirements for minimum bias designs follow along lines similar to those given by Box and Draper (J. Amer. Stat. Assoc., 54, 1959, p. 622). The minimum bias designs are obtained for specific values of N with a maximum protection level, γ<sub>d</sub>*(N), for the parameter γ and an approximation function of degree d. These designs obtained possess several degrees of freedom in the choice of the design levels of the x<sub>u</sub> or the Z<sub>u</sub>u , which may be used to satisfy additional design requirements. It is shown that for a given N, the same designs which minimize bias for approximation functions of degree one also minimize bias for general degree d, with a decrease in γ<sub>d</sub>*(N) as d increases. In fact γ<sub>d</sub>*(N) = γ<sub>1</sub>*(N) - d + 1, but with the decrease in γ<sub>d</sub>*(N) is a compensating decrease in the actual level of the minimum bias. Furthermore, γ<sub>d</sub>*(N) increases monotonically with N, thereby allowing the maximum protection level on 1 to be increased as desired by increasing N. In the course of obtaining solutions, some interesting techniques are developed for determining the nature of the roots of a polynomial equation which has several known coefficients and several variable coefficients.en
dc.description.degreePh. D.en
dc.format.extentv, 174 leavesen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/101276en
dc.language.isoenen
dc.publisherVirginia Polytechnic Instituteen
dc.relation.isformatofOCLC# 20343574en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V856 1965.M357en
dc.subject.lcshExperimental designen
dc.subject.lcshExponential sumsen
dc.titleMinimum bias designs for an exponential responseen
dc.typeDissertationen
dc.type.dcmitypeTexten
thesis.degree.disciplineStatisticsen
thesis.degree.grantorVirginia Polytechnic Instituteen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V856_1965.M357.pdf
Size:
9.01 MB
Format:
Adobe Portable Document Format