Controlling Quantum Systems for Computation and Communication

TR Number

Date

2023-02-02

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Quantum information processing has the potential of implementing faster algorithms for numerous problems, communicating with more secure channels, and performing higher precision sensing compared to classical methods. Recent experimental technology advancement has brought us a promising future of harnessing such quantum advantage. Yet, quantum engineering entails wise control and strategy under the current noisy intermediate-scale quantum era. Developing robust and efficient approaches to manipulating quantum systems based on constrained and limited resources is imperative. This dissertation focuses on two major topics theoretically. In the first part, this work present how to conceive robust quantum control on matter-based qubits with a geometric approach. We have proposed the method of designing noise robust control pulses suitable for practical devices by combining spatial curves, filter functions, and machine learning. In the second part, this work stresses the topic of photonic multipartite entangled graph states. An improved protocol of generating arbitrary graph states is introduced. We show that one can efficiently find the deterministic photon emission circuit with minimal overhead on the number of quantum emitters.

Description

Keywords

Quantum Information, Quantum Physics

Citation