A Hybrid Framework Combining Model-Based and Data-Driven Methods for Hierarchical Decentralized Robust Dynamic State Estimation
dc.contributor.author | Netto, Marcos | en |
dc.contributor.author | Krishnan, Venkat | en |
dc.contributor.author | Mili, Lamine M. | en |
dc.contributor.author | Susuki, Yoshihiko | en |
dc.contributor.author | Zhang, Yingchen | en |
dc.date.accessioned | 2024-01-22T15:47:29Z | en |
dc.date.available | 2024-01-22T15:47:29Z | en |
dc.date.issued | 2019-08-01 | en |
dc.description.abstract | This paper combines model-based and data-driven methods to develop a hierarchical, decentralized, robust dynamic state estimator (DSE). A two-level hierarchy is proposed, where the lower level consists of robust, model-based, decentralized DSEs. The state estimates sent from the lower level are received at the upper level, where they are filtered by a robust data-driven DSE after a principled sparse selection. This selection allows us to shrink the dimension of the problem at the upper level and hence significantly speed up the computational time. The proposed hybrid framework does not depend on the centralized infrastructure of the control centers; thus it can be completely embedded into the wide-area measurement systems. This feature will ultimately facilitate the placement of hierarchical decentralized control schemes at the phasor data concentrator locations. Also, the network model is not necessary; thus, a topology processor is not required. Finally, there is no assumption on the dynamics of the electric loads. The proposed framework is tested on the 2,000-bus synthetic Texas system, and shown to be capable of reconstructing the dynamic states of the generators with high accuracy, and of forecasting in the advent of missing data. | en |
dc.description.version | Published version | en |
dc.format.extent | Pages 1-5 | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1109/PESGM40551.2019.8973772 | en |
dc.identifier.eissn | 1944-9933 | en |
dc.identifier.isbn | 9781728119816 | en |
dc.identifier.issn | 1944-9925 | en |
dc.identifier.orcid | Mili, Lamine [0000-0001-6134-3945] | en |
dc.identifier.uri | https://hdl.handle.net/10919/117520 | en |
dc.identifier.volume | 2019-August | en |
dc.language.iso | en | en |
dc.publisher | IEEE | en |
dc.rights | Public Domain (U.S.) | en |
dc.rights.uri | http://creativecommons.org/publicdomain/mark/1.0/ | en |
dc.title | A Hybrid Framework Combining Model-Based and Data-Driven Methods for Hierarchical Decentralized Robust Dynamic State Estimation | en |
dc.title.serial | IEEE Power and Energy Society General Meeting | en |
dc.type | Conference proceeding | en |
dc.type.dcmitype | Text | en |
dc.type.other | Conference Proceeding | en |
pubs.finish-date | 2019-08-08 | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Electrical and Computer Engineering | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
pubs.start-date | 2019-08-04 | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- A_Hybrid_Framework_Combining_Model-Based_and_Data-Driven_Methods_for_Hierarchical_Decentralized_Robust_Dynamic_State_Estimation.pdf
- Size:
- 5.74 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version
License bundle
1 - 1 of 1