How the Post-Data Severity Converts Testing Results into Evidence for or against Pertinent Inferential Claims

dc.contributor.authorSpanos, Arisen
dc.date.accessioned2024-02-01T14:30:05Zen
dc.date.available2024-02-01T14:30:05Zen
dc.date.issued2024-01-22en
dc.date.updated2024-01-26T14:10:52Zen
dc.description.abstractThe paper makes a case that the current discussions on replicability and the abuse of significance testing have overlooked a more general contributor to the untrustworthiness of published empirical evidence, which is the uninformed and recipe-like implementation of statistical modeling and inference. It is argued that this contributes to the untrustworthiness problem in several different ways, including [a] statistical misspecification, [b] unwarranted evidential interpretations of frequentist inference results, and [c] questionable modeling strategies that rely on curve-fitting. What is more, the alternative proposals to replace or modify frequentist testing, including [i] replacing <i>p</i>-values with observed confidence intervals and effects sizes, and [ii] redefining statistical significance, will not address the untrustworthiness of evidence problem since they are equally vulnerable to [a]&ndash;[c]. The paper calls for distinguishing between unduly data-dependant &lsquo;statistical results&rsquo;, such as a point estimate, a <i>p</i>-value, and accept/reject <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mn>0</mn></msub></semantics></math></inline-formula>, from &lsquo;evidence for or against inferential claims&rsquo;. The post-data severity (SEV) evaluation of the accept/reject <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mn>0</mn></msub></semantics></math></inline-formula> results, converts them into evidence for or against germane inferential claims. These claims can be used to address/elucidate several foundational issues, including (i) statistical vs. substantive significance, (ii) the large n problem, and (iii) the replicability of evidence. Also, the SEV perspective sheds light on the impertinence of the proposed alternatives [i]&ndash;[iii], and oppugns [iii] the alleged arbitrariness of framing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mn>0</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mn>1</mn></msub></semantics></math></inline-formula> which is often exploited to undermine the credibility of frequentist testing.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationSpanos, A. How the Post-Data Severity Converts Testing Results into Evidence for or against Pertinent Inferential Claims. Entropy 2024, 26, 95.en
dc.identifier.doihttps://doi.org/10.3390/e26010095en
dc.identifier.urihttps://hdl.handle.net/10919/117785en
dc.language.isoenen
dc.publisherMDPIen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectreplicationen
dc.subjectuntrustworthy evidenceen
dc.subjectstatistical misspecificationen
dc.subjectstatistical vs. substantive significanceen
dc.subjectpre-data vs. post-data error probabilitiesen
dc.subjectp-hackingen
dc.subjectpost-data severity evaluationen
dc.subjectobserved confidence intervalsen
dc.subjecteffect sizesen
dc.titleHow the Post-Data Severity Converts Testing Results into Evidence for or against Pertinent Inferential Claimsen
dc.title.serialEntropyen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
entropy-26-00095.pdf
Size:
501.47 KB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: