Lattice Matched Tunable Wavelength GeSn Quantum Well Laser Architectures: Theoretical Investigation

dc.contributor.authorJoshi, Rutwiken
dc.contributor.authorLester, Luke F.en
dc.contributor.authorHudait, Mantu K.en
dc.date.accessioned2025-03-03T14:04:10Zen
dc.date.available2025-03-03T14:04:10Zen
dc.date.issued2024-07-29en
dc.description.abstractIn this work, we propose an initial framework and present numerical estimates for designing a GeSn-based quantum well (QW) laser that can attain efficient lasing, while utilizing a monolithic lattice matched (LM) InGaAs/GeSn/InGaAs stack. GeSn QW emission characteristics depend significantly on the quantized energy level as the bulk bandgap reduces and approaches zero for high Sn. One factor that diminishes the quantum efficiency of light sources is the defects present within the active region, which result in non-radiative recombination. Furthermore, defects at the interface can hinder the band alignment causing loss of carrier confinement. InGaAs, InAlAs and a well-designed LGB can provide large band offsets with GeSn to form a type I separate confinement heterostructure (SCH) QW laser structure while enabling a virtually defect-free active region suitable for room temperature operation and scalable to an arbitrary number of QWs. When LM, the InAlAs and InGaAs layers provide a large total band offset of ∼1.1eV and ∼0.6eV, respectively. For a 10 nm GeSn QW SCH laser, a threshold current (JTH) of ∼ 10 A/cm2 can be achieved at an emission wavelength of ∼ 2.6 μm with a net material and modal gain of ∼ 3000 cm-1 and ∼ 40 cm-1, respectively. The JTH and net gain can be optimized for the InAlAs/InGaAs/GeSn/InGaAs/InAlAs SCH laser structure for Sn between 8-18% by adaptively designing the SCH waveguide and QW. Through adaptive waveguide design, quantization, and Sn alloying, a wide application space (1.2μm to 6μm) can be covered.en
dc.description.versionAccepted versionen
dc.format.extent12 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierARTN 1500612 (Article number)en
dc.identifier.doihttps://doi.org/10.1109/JSTQE.2024.3434581en
dc.identifier.eissn1558-4542en
dc.identifier.issn1077-260Xen
dc.identifier.issue1en
dc.identifier.orcidHudait, Mantu [0000-0002-9789-3081]en
dc.identifier.urihttps://hdl.handle.net/10919/124757en
dc.identifier.volume31en
dc.language.isoenen
dc.publisherIEEEen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectLatticesen
dc.subjectLasersen
dc.subjectOptical waveguidesen
dc.subjectWaveguide lasersen
dc.subjectSiliconen
dc.subjectIndium gallium arsenideen
dc.subjectGermaniumen
dc.subjectQuantum well laseren
dc.subjectGeSnen
dc.subjectInGaAs/InAlAsen
dc.subjectmonolithic light sourceen
dc.subjectlattice matched (LM) GeSn laseren
dc.subjecttensile GeSnen
dc.subjectGAINen
dc.titleLattice Matched Tunable Wavelength GeSn Quantum Well Laser Architectures: Theoretical Investigationen
dc.title.serialIEEE Journal of Quantum Electronicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Engineeringen
pubs.organisational-groupVirginia Tech/Engineering/Electrical and Computer Engineeringen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JSTQE-CON-SIPQE2025-09854-2024 Accepted Version.pdf
Size:
613.58 KB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: