Modeling of stochastic motion of bacteria propelled spherical microbeads
dc.contributor | Virginia Tech. Department of Mechanical Engineering | en |
dc.contributor | Carnegie Mellon University. Department of Mechanical Engineering | en |
dc.contributor.author | Arabagi, Veaceslav | en |
dc.contributor.author | Behkam, Bahareh | en |
dc.contributor.author | Cheung, Eugene | en |
dc.contributor.author | Sitti, Metin | en |
dc.contributor.department | Mechanical Engineering | en |
dc.date.accessed | 2015-04-24 | en |
dc.date.accessioned | 2015-05-26T22:32:23Z | en |
dc.date.available | 2015-05-26T22:32:23Z | en |
dc.date.issued | 2011-06-01 | en |
dc.description.abstract | This work proposes a stochastic dynamic model of bacteria propelled spherical microbeads as potential swimming microrobotic bodies. Small numbers of S. marcescens bacteria are attached with their bodies to surfaces of spherical microbeads. Average-behavior stochastic models that are normally adopted when studying such biological systems are generally not effective for cases in which a small number of agents are interacting in a complex manner, hence a stochastic model is proposed to simulate the behavior of 8-41 bacteria assembled on a curved surface. Flexibility of the flagellar hook is studied via comparing simulated and experimental results for scenarios of increasing bead size and the number of attached bacteria on a bead. Although requiring more experimental data to yield an exact, certain flagellar hook stiffness value, the examined results favor a stiffer flagella. The stochastic model is intended to be used as a design and simulation tool for future potential targeted drug delivery and disease diagnosis applications of bacteria propelled microrobots. (C) 2011 American Institute of Physics. [doi:10.1063/1.3592970] | en |
dc.format.extent | 11 pages | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Arabagi, V., Bahareh, B., Cheung, E. & Sitti, M. (2011). Modeling of stochastic motion of bacteria propelled spherical microbeads. Journal of Applied Physics, 109(11). doi: 10.1063/1.3592970 | en |
dc.identifier.doi | https://doi.org/10.1063/1.3592970 | en |
dc.identifier.issn | 0021-8979 | en |
dc.identifier.uri | http://hdl.handle.net/10919/52614 | en |
dc.identifier.url | http://scitation.aip.org/content/aip/journal/jap/109/11/10.1063/1.3592970 | en |
dc.language.iso | en_US | en |
dc.publisher | American Institute of Physics | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Bacteria | en |
dc.subject | Flagella | en |
dc.subject | Fluid flows | en |
dc.subject | Hydrodynamics | en |
dc.subject | Numerical modeling | en |
dc.title | Modeling of stochastic motion of bacteria propelled spherical microbeads | en |
dc.title.serial | Journal of Applied Physics | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2011_Modeling_stochastic_motion.pdf
- Size:
- 3.71 MB
- Format:
- Adobe Portable Document Format
- Description: