VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Position and momentum uncertainties of the normal and inverted harmonic oscillators under the minimal length uncertainty relation

dc.contributorVirginia Techen
dc.contributor.authorLewis, Zacharyen
dc.contributor.authorTakeuchi, Tatsuen
dc.contributor.departmentPhysicsen
dc.date.accessed2013-12-16en
dc.date.accessioned2013-12-18T19:46:40Zen
dc.date.available2013-12-18T19:46:40Zen
dc.date.issued2011-11-18en
dc.description.abstractWe analyze the position and momentum uncertainties of the energy eigenstates of the harmonic oscillator in the context of a deformed quantum mechanics, namely, that in which the commutator between the position and momentum operators is given by [(x) over cap, (p) over cap] = i (h) over bar (1 + beta(p) over cap (2)). This deformed commutation relation leads to the minimal length uncertainty relation Delta x >= ((h) over bar /2)(1/Delta p + beta Delta p), which implies that Delta x similar to 1/Delta p at small Delta p while Delta x similar to Delta p at large Delta p. We find that the uncertainties of the energy eigenstates of the normal harmonic oscillator (m > 0), derived in L. N. Chang, D. Minic, N. Okamura, and T. Takeuchi, Phys. Rev. D 65, 125027 ( 2002), only populate the Delta x similar to 1/Delta p branch. The other branch, Delta x similar to Delta p, is found to be populated by the energy eigenstates of the "inverted" harmonic oscillator (m < 0). The Hilbert space in the inverted case admits an infinite ladder of positive energy eigenstates provided that Delta x(min) = <(h)over bar>root beta > root 2[(h) over bar (2)/k vertical bar m vertical bar](1/4). Correspondence with the classical limit is also discussed.en
dc.description.sponsorshipU.S. Department of Energy DE-FG05-92ER40709en
dc.identifier.citationLewis, Zachary ; Takeuchi, Tatsu, NOV 18 2011. “Position and momentum uncertainties of the normal and inverted harmonic oscillators under the minimal length uncertainty relation,” PHYSICAL REVIEW D 84(10): 105029. DOI: 10.1103/PhysRevD.84.105029en
dc.identifier.doihttps://doi.org/10.1103/PhysRevD.84.105029en
dc.identifier.issn1550-7998en
dc.identifier.urihttp://hdl.handle.net/10919/24752en
dc.identifier.urlhttp://link.aps.org/doi/10.1103/PhysRevD.84.105029en
dc.language.isoen_USen
dc.publisherAmerican Physical Societyen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectquantum-gravityen
dc.subjectsuperstring collisionsen
dc.subjectprincipleen
dc.subjectenergyen
dc.subjectspaceen
dc.subjectregularizationen
dc.subjectmechanicsen
dc.subjectspectrumen
dc.subjectscaleen
dc.subjectAstronomy & Astrophysicsen
dc.subjectPhysicsen
dc.titlePosition and momentum uncertainties of the normal and inverted harmonic oscillators under the minimal length uncertainty relationen
dc.title.serialPhysical Review Den
dc.typeArticle - Refereeden

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevD.84.105029-accepted.pdf
Size:
578.39 KB
Format:
Adobe Portable Document Format
Description:
Main article