Position and momentum uncertainties of the normal and inverted harmonic oscillators under the minimal length uncertainty relation
dc.contributor | Virginia Tech | en |
dc.contributor.author | Lewis, Zachary | en |
dc.contributor.author | Takeuchi, Tatsu | en |
dc.contributor.department | Physics | en |
dc.date.accessed | 2013-12-16 | en |
dc.date.accessioned | 2013-12-18T19:46:40Z | en |
dc.date.available | 2013-12-18T19:46:40Z | en |
dc.date.issued | 2011-11-18 | en |
dc.description.abstract | We analyze the position and momentum uncertainties of the energy eigenstates of the harmonic oscillator in the context of a deformed quantum mechanics, namely, that in which the commutator between the position and momentum operators is given by [(x) over cap, (p) over cap] = i (h) over bar (1 + beta(p) over cap (2)). This deformed commutation relation leads to the minimal length uncertainty relation Delta x >= ((h) over bar /2)(1/Delta p + beta Delta p), which implies that Delta x similar to 1/Delta p at small Delta p while Delta x similar to Delta p at large Delta p. We find that the uncertainties of the energy eigenstates of the normal harmonic oscillator (m > 0), derived in L. N. Chang, D. Minic, N. Okamura, and T. Takeuchi, Phys. Rev. D 65, 125027 ( 2002), only populate the Delta x similar to 1/Delta p branch. The other branch, Delta x similar to Delta p, is found to be populated by the energy eigenstates of the "inverted" harmonic oscillator (m < 0). The Hilbert space in the inverted case admits an infinite ladder of positive energy eigenstates provided that Delta x(min) = <(h)over bar>root beta > root 2[(h) over bar (2)/k vertical bar m vertical bar](1/4). Correspondence with the classical limit is also discussed. | en |
dc.description.sponsorship | U.S. Department of Energy DE-FG05-92ER40709 | en |
dc.identifier.citation | Lewis, Zachary ; Takeuchi, Tatsu, NOV 18 2011. “Position and momentum uncertainties of the normal and inverted harmonic oscillators under the minimal length uncertainty relation,” PHYSICAL REVIEW D 84(10): 105029. DOI: 10.1103/PhysRevD.84.105029 | en |
dc.identifier.doi | https://doi.org/10.1103/PhysRevD.84.105029 | en |
dc.identifier.issn | 1550-7998 | en |
dc.identifier.uri | http://hdl.handle.net/10919/24752 | en |
dc.identifier.url | http://link.aps.org/doi/10.1103/PhysRevD.84.105029 | en |
dc.language.iso | en_US | en |
dc.publisher | American Physical Society | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | quantum-gravity | en |
dc.subject | superstring collisions | en |
dc.subject | principle | en |
dc.subject | energy | en |
dc.subject | space | en |
dc.subject | regularization | en |
dc.subject | mechanics | en |
dc.subject | spectrum | en |
dc.subject | scale | en |
dc.subject | Astronomy & Astrophysics | en |
dc.subject | Physics | en |
dc.title | Position and momentum uncertainties of the normal and inverted harmonic oscillators under the minimal length uncertainty relation | en |
dc.title.serial | Physical Review D | en |
dc.type | Article - Refereed | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- PhysRevD.84.105029-accepted.pdf
- Size:
- 578.39 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main article