Sensory Entrainment, Paying Attention, and Keeping Beat: General Effects and Individual Differences
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Neural entrainment is a phenomenon whereby neural oscillations adjust their frequency to synchronize with the periodic vibration of external stimuli. Research suggests that neural entrainment may help explain the relationship between music education and more optimal cognitive performance later in development. This dissertation tested whether sensory entrainment caused short-term cognitive and motor performance benefits in a young adult sample, and whether entrainment or performance were impacted by stimulus parameters like modality or rhythm or individual differences in attentional ability and music training. Participants (N= 47) were asked to report the extent and type (e.g. instrumental, vocal) of music experience and severity of ADHD symptoms, and then were exposed to repetitive 1.25-Hz or arrhythmic visual or auditory stimuli with interlaced Flanker test items, while EEG was recorded. At some points in the experiment participants were additionally tasked with tapping along to the 1.25-Hz beat through both beat stimuli and gaps. Some entrainment and performance effects were congruent with findings from prior literature, while many other hypotheses regarding entrainment effects were not supported. In terms of individual differences, neither music training nor ADHD symptoms impacted entrainment, but ADHD did impact the effects of entrainment stimuli on Flanker reaction time, with higher ADHD symptoms predicting worse performance during periods of rhythmic stimulation. Lastly and surprisingly, while neither entrainment, music training, nor ADHD symptoms impacted beat-keeping performance in general, ADHD symptoms predicted better beat-keeping during stimulus gap periods. Results in general paint a complicated picture of acute entrainment effects and individual differences.