Fair and Risk-Averse Resource Allocation in Transportation Systems under Uncertainties

TR Number

Date

2023-07-11

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Addressing fairness among users and risk mitigation in the context of resource allocation in transportation systems under uncertainties poses a crucial challenge yet to be satisfactorily resolved. This dissertation attempts to address this challenge, focusing on achieving a balance between system-wide efficiency and individual fairness in stochastic transportation resource allocation problems. To study complicated fair and risk-averse resource allocation problems - from public transit to urban air mobility and multi-stage infrastructure maintenance - we develop three models: DrFRAM, FairUAM, and FCMDP. Each of these models, despite being proven NP-hard even in a simplistic case, inspires us to develop efficient solution algorithms. We derive mixed-integer linear programming (MILP) formulations for these models, leveraging the unique properties of each model and linearizing non-linear terms. Additionally, we strengthen these models with valid inequalities. To efficiently solve these models, we design exact algorithms and approximation algorithms capable of obtaining near-optimal solutions. We numerically validate the effectiveness of our proposed models and demonstrate their capability to be applied to real-world case studies to adeptly address the uncertainties and risks arising from transportation systems. This dissertation provides a foundational platform for future inquiries of risk-averse resource allocation strategies under uncertainties for more efficient, equitable, and resilient decision-making. Our adaptable framework can address a variety of transportation-related challenges and can be extended beyond the transportation domain to tackle resource allocation problems in a broader setting.

Description

Keywords

Resource Allocation, Mixed-Integer Programming, Valid Inequalities, Fairness, Risk-Averse

Citation