Knowledge-guided gene ranking by coordinative component analysis

dc.contributor.authorWang, Chenen
dc.contributor.authorXuan, Jianhuaen
dc.contributor.authorLi, Huaien
dc.contributor.authorWang, Yueen
dc.contributor.authorZhan, Mingen
dc.contributor.authorHoffman, Eric P.en
dc.contributor.authorClarke, Roberten
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessioned2012-08-01T07:00:18Zen
dc.date.available2012-08-01T07:00:18Zen
dc.date.issued2010-03-30en
dc.date.updated2012-08-01T07:00:18Zen
dc.description.abstractBackground In cancer, gene networks and pathways often exhibit dynamic behavior, particularly during the process of carcinogenesis. Thus, it is important to prioritize those genes that are strongly associated with the functionality of a network. Traditional statistical methods are often inept to identify biologically relevant member genes, motivating researchers to incorporate biological knowledge into gene ranking methods. However, current integration strategies are often heuristic and fail to incorporate fully the true interplay between biological knowledge and gene expression data. Results To improve knowledge-guided gene ranking, we propose a novel method called coordinative component analysis (COCA) in this paper. COCA explicitly captures those genes within a specific biological context that are likely to be expressed in a coordinative manner. Formulated as an optimization problem to maximize the coordinative effort, COCA is designed to first extract the coordinative components based on a partial guidance from knowledge genes and then rank the genes according to their participation strengths. An embedded bootstrapping procedure is implemented to improve statistical robustness of the solutions. COCA was initially tested on simulation data and then on published gene expression microarray data to demonstrate its improved performance as compared to traditional statistical methods. Finally, the COCA approach has been applied to stem cell data to identify biologically relevant genes in signaling pathways. As a result, the COCA approach uncovers novel pathway members that may shed light into the pathway deregulation in cancers. Conclusion We have developed a new integrative strategy to combine biological knowledge and microarray data for gene ranking. The method utilizes knowledge genes for a guidance to first extract coordinative components, and then rank the genes according to their contribution related to a network or pathway. The experimental results show that such a knowledge-guided strategy can provide context-specific gene ranking with an improved performance in pathway member identification.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationBMC Bioinformatics. 2010 Mar 30;11(1):162en
dc.identifier.doihttps://doi.org/10.1186/1471-2105-11-162en
dc.identifier.urihttp://hdl.handle.net/10919/18755en
dc.language.isoenen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.holderChen Wang et al.; licensee BioMed Central Ltd.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleKnowledge-guided gene ranking by coordinative component analysisen
dc.title.serialBMC Bioinformaticsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 5 of 7
Name:
1471-2105-11-162.xml
Size:
91.78 KB
Format:
Extensible Markup Language
Loading...
Thumbnail Image
Name:
1471-2105-11-162.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
1471-2105-11-162-S3.PDF
Size:
32.06 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
1471-2105-11-162-S2.PDF
Size:
40.08 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
1471-2105-11-162-S5.PDF
Size:
38.74 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: