Evaluating Factors Contributing to Crash Severity Among Older Drivers: Statistical Modeling and Machine Learning Approaches

TR Number

Date

2024-02-23

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Road crashes pose a significant public health issue worldwide, often leading to severe injuries and fatalities. This dissertation embarks on a comprehensive examination of the factors affecting road crash severity, with a special focus on older drivers and the unique challenges introduced by the COVID-19 pandemic. Utilizing a dataset from Virginia, USA, the research integrates advanced statistical methods and machine learning techniques to dissect this critical issue from multiple angles. The initial study within the dissertation employs multilevel ordinal logistic regression to assess crash severity among older drivers, revealing the complex interplay of various factors such as crash type, road attributes, and driver behavior. It highlights the increased risk of severe crashes associated with head-on collisions, driver distraction or impairment, and the non-use of seat belts, specifically affecting older drivers. These findings are pivotal in understanding the unique vulnerabilities of this demographic on the road. Furthermore, the dissertation explores the efficacy of both parametric and non-parametric machine learning models in predicting crash severity. It emphasizes the innovative use of synthetic resampling techniques, particularly random over-sampling examples (ROSE) and synthetic minority over-sampling technique (SMOTE), to address class imbalances. This methodological advancement not only improves the accuracy of crash severity predictions for severe crashes but also offers a comprehensive understanding of diverse factors, including environmental and roadway characteristics. Additionally, the dissertation examines the influence of the COVID-19 pandemic on road safety, revealing a paradoxical decrease in overall traffic crashes accompanied by an increase in the rate of severe injuries. This finding underscores the pandemic's transformative effect on driving behaviors and patterns, heightening risks for vulnerable road users like pedestrians and cyclists. The study calls for adaptable road safety strategies responsive to global challenges and societal shifts. Collectively, the studies within this dissertation contribute substantially to transportation safety research. They demonstrate the complex nature of factors influencing crash severity and the efficacy of tailored approaches in addressing these challenges. The integration of advanced statistical methods with machine learning techniques offers a profound understanding of crash dynamics and sets a new benchmark for future research in transportation safety. This dissertation underscores the evolving challenges in road safety, especially amidst demographic shifts and global crises, and advocates for adaptive, evidence-based strategies to enhance road safety for all, particularly vulnerable groups like the older drivers.

Description

Keywords

Crash Severity, Machine Learning, Statistical Modeling, Multilevel Modeling, Resampling Techniques, Imbalance Data, Road Safety, Older drivers, Temporal Instability, COVID-19, Transportation safety

Citation