Investigating the role of the Apicoplast in Plasmodium falciparum Gametocyte Stages

dc.contributor.authorWiley, Jessica Deliaen
dc.contributor.committeechairCassera, Maria B.en
dc.contributor.committeememberKlemba, Michaelen
dc.contributor.committeememberGillaspy, Glenda E.en
dc.contributor.committeememberFinkielstein, Carla V.en
dc.contributor.committeememberZhu, Jinsongen
dc.contributor.departmentBiochemistryen
dc.date.accessioned2015-11-14T07:00:27Zen
dc.date.available2015-11-14T07:00:27Zen
dc.date.issued2014-05-22en
dc.description.abstractMalaria continues to be a global health burden that affects millions of people worldwide each year. Increasing demand for malaria control and eradication has led research to focus on sexual development of the malaria parasite. Sexual development is initiated when pre-destined intraerythrocytic ring stage parasites leave asexual reproduction and develop into gametocytes. A mosquito vector will ingest mature gametocytes during a blood meal. Sexual reproduction will occur in the midgut, leading to the production of sporozoites that will migrate to the salivary gland. The sporozoites will be injected to another human host during the next blood meal consequently, transmitting malaria. Due to decreased drug susceptibility of mature gametocytes, more investigation of the biology and metabolic requirements of malaria parasites during gametocytogenesis, as well as during the mosquito stages, are urgently needed to reveal novel targets for development of transmission-blocking agents. Furthermore, increasing drug resistance of the parasites to current antimalarials, including slowed clearance rates to artemisinin, requires the discovery of innovative drugs against asexual intraerythrocytic stages with novel mechanisms of action. Here, we have investigated the role of the apicoplast during Plasmodium falciparum gametocytogenesis. In addition, we describe drug-screening studies that have elucidated a novel mode of action of one compound from the Malaria Box, as well as identified new natural product compounds that may be serve as starting molecules for antimalarial development.en
dc.description.degreePh. D.en
dc.format.mediumETDen
dc.identifier.othervt_gsexam:2363en
dc.identifier.urihttp://hdl.handle.net/10919/64150en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectPlasmodium falciparumen
dc.subjectmalariaen
dc.subjectgametocytogenesisen
dc.subjectapicoplasten
dc.subjectdrug discoveryen
dc.subjectnatural productsen
dc.titleInvestigating the role of the Apicoplast in Plasmodium falciparum Gametocyte Stagesen
dc.typeDissertationen
thesis.degree.disciplineBiochemistryen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Wiley_JD_D_2014.pdf
Size:
14.64 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Wiley_JD_D_2014_support_1.pdf
Size:
171.97 KB
Format:
Adobe Portable Document Format
Description:
Supporting documents