Foundations of Radio Frequency Transfer Learning
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The introduction of Machine Learning (ML) and Deep Learning (DL) techniques into modern radio communications system, a field known as Radio Frequency Machine Learning (RFML), has the potential to provide increased performance and flexibility when compared to traditional signal processing techniques and has broad utility in both the commercial and defense sectors. Existing RFML systems predominately utilize supervised learning solutions in which the training process is performed offline, before deployment, and the learned model remains fixed once deployed. The inflexibility of these systems means that, while they are appropriate for the conditions assumed during offline training, they show limited adaptability to changes in the propagation environment and transmitter/receiver hardware, leading to significant performance degradation. Given the fluidity of modern communication environments, this rigidness has limited the widespread adoption of RFML solutions to date.
Transfer Learning (TL) is a means to mitigate such performance degradations by re-using prior knowledge learned from a source domain and task to improve performance on a "similar" target domain and task. However, the benefits of TL have yet to be fully demonstrated and integrated into RFML systems. This dissertation begins by clearly defining the problem space of RF TL through a domain-specific TL taxonomy for RFML that provides common language and terminology with concrete and Radio Frequency (RF)-specific example use- cases. Then, the impacts of the RF domain, characterized by the hardware and channel environment(s), and task, characterized by the application(s) being addressed, on performance are studied, and methods and metrics for predicting and quantifying RF TL performance are examined. In total, this work provides the foundational knowledge to more reliably use TL approaches in RF contexts and opens directions for future work that will improve the robustness and increase the deployability of RFML.