Algorithm-derived feature representations for explainable AI in catalysis

dc.contributor.authorOmidvar, Noushinen
dc.contributor.authorXin, Hongliangen
dc.date.accessioned2022-02-13T01:06:51Zen
dc.date.available2022-02-13T01:06:51Zen
dc.date.issued2021-12-01en
dc.date.updated2022-02-13T01:06:47Zen
dc.description.abstractMachine learning (ML) has emerged as a critical tool in catalysis, attributed to its capability of finding complex patterns in high dimensional and heterogeneous data. A recently published article in Chem Catalysis (Esterhuizen et al.) used unsupervised ML for uncovering electronic and geometric descriptors of the surface reactivity of metal alloys and oxides.en
dc.description.versionAccepted versionen
dc.format.extentPages 990-992en
dc.format.extent3 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1016/j.trechm.2021.10.001en
dc.identifier.eissn2589-5974en
dc.identifier.issn2589-5974en
dc.identifier.issue12en
dc.identifier.orcidXin, Hongliang [0000-0001-9344-1697]en
dc.identifier.urihttp://hdl.handle.net/10919/108328en
dc.identifier.volume3en
dc.language.isoenen
dc.publisherElsevieren
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000727805300002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectChemistryen
dc.subjectCHEMISORPTIONen
dc.subjectREACTIVITYen
dc.titleAlgorithm-derived feature representations for explainable AI in catalysisen
dc.title.serialTrends in Chemistryen
dc.typeArticleen
dc.typeEditorial materialen
dc.typeEditorial materialen
dc.type.dcmitypeTexten
dc.type.otherJournalen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Chemical Engineeringen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Omidvar and Xin 2021 - Algorithm-derived feature representations for explainable AI in catalysis.pdf
Size:
519.45 KB
Format:
Adobe Portable Document Format
Description:
Accepted version