Algorithm-derived feature representations for explainable AI in catalysis
dc.contributor.author | Omidvar, Noushin | en |
dc.contributor.author | Xin, Hongliang | en |
dc.date.accessioned | 2022-02-13T01:06:51Z | en |
dc.date.available | 2022-02-13T01:06:51Z | en |
dc.date.issued | 2021-12-01 | en |
dc.date.updated | 2022-02-13T01:06:47Z | en |
dc.description.abstract | Machine learning (ML) has emerged as a critical tool in catalysis, attributed to its capability of finding complex patterns in high dimensional and heterogeneous data. A recently published article in Chem Catalysis (Esterhuizen et al.) used unsupervised ML for uncovering electronic and geometric descriptors of the surface reactivity of metal alloys and oxides. | en |
dc.description.version | Accepted version | en |
dc.format.extent | Pages 990-992 | en |
dc.format.extent | 3 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1016/j.trechm.2021.10.001 | en |
dc.identifier.eissn | 2589-5974 | en |
dc.identifier.issn | 2589-5974 | en |
dc.identifier.issue | 12 | en |
dc.identifier.orcid | Xin, Hongliang [0000-0001-9344-1697] | en |
dc.identifier.uri | http://hdl.handle.net/10919/108328 | en |
dc.identifier.volume | 3 | en |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000727805300002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Chemistry | en |
dc.subject | CHEMISORPTION | en |
dc.subject | REACTIVITY | en |
dc.title | Algorithm-derived feature representations for explainable AI in catalysis | en |
dc.title.serial | Trends in Chemistry | en |
dc.type | Article | en |
dc.type | Editorial material | en |
dc.type | Editorial material | en |
dc.type.dcmitype | Text | en |
dc.type.other | Journal | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Chemical Engineering | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Omidvar and Xin 2021 - Algorithm-derived feature representations for explainable AI in catalysis.pdf
- Size:
- 519.45 KB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version