VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Development and Evaluation of a Cellular Vehicle-to-Everything Enabled Energy-Efficient Dynamic Routing Application

dc.contributor.authorFarag, Mohamed M. G.en
dc.contributor.authorRakha, Hesham A.en
dc.date.accessioned2023-02-24T15:48:10Zen
dc.date.available2023-02-24T15:48:10Zen
dc.date.issued2023-02-19en
dc.date.updated2023-02-24T14:08:02Zen
dc.description.abstractCellular vehicle-to-everything (C-V2X) is a communication technology that supports various safety, mobility, and environmental applications, given its higher reliability properties compared to other communication technologies. The performance of these C-V2X-enabled intelligent transportation system (ITS) applications is affected by the performance of the C-V2X communication technology (mainly packet loss). Similarly, the performance of the C-V2X communication is dependent on the vehicular traffic density which is affected by the traffic mobility patterns and vehicle routing strategies. Consequently, it is critical to develop a tool that can simulate, analyze, and evaluate the mutual interactions of the transportation and communication systems at the application level to quantify the benefits of C-V2X-enabled ITS applications realistically. In this paper, we demonstrate the benefits gained when using C-V2X Vehicle-to-Infrastructure (V2I) communication technology in an energy-efficient dynamic routing application. Specifically, we develop a Connected Energy-Efficient Dynamic Routing (C-EEDR) application using C-V2X as a communication medium in an integrated vehicular traffic and communication simulator (INTEGRATION). The results demonstrate that the C-EEDR application achieves fuel savings of up to 16.6% and 14.7% in the IDEAL and C-V2X communication cases, respectively, for a peak hour demand on the downtown Los Angeles network considering a 50% level of market penetration of connected vehicles. The results demonstrate that the fuel savings increase with increasing levels of market penetration at lower traffic demand levels (25% and 50% the peak demand). At higher traffic demand levels (75% and 100%), the fuel savings increase with increasing levels of market penetration with maximum benefits at a 50% market penetration rate. Although the communication system is affected by the high density of vehicles at the high traffic demand levels (75% and 100% the peak demand), the C-EEDR application manages to perform reliably, producing system-wide fuel consumption savings.The C-EEDR application achieves fuel savings of 15.2% and 11.7% for the IDEAL communication and 14% and 9% for the C-V2X communication at the 75% and 100% market penetration rates, respectively. Finally, the paper demonstrates that the C-V2X communication constraints only affect the performance of the C-EEDR application at the full demand level when the market penetration of the connected vehicles exceeds 25%. This degradation, however, is minimal (less than a 2.5% reduction in fuel savings).en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationFarag, M.M.G.; Rakha, H.A. Development and Evaluation of a Cellular Vehicle-to-Everything Enabled Energy-Efficient Dynamic Routing Application. Sensors 2023, 23, 2314.en
dc.identifier.doihttps://doi.org/10.3390/s23042314en
dc.identifier.urihttp://hdl.handle.net/10919/113944en
dc.language.isoenen
dc.publisherMDPIen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectC-V2Xen
dc.subjecteco-routingen
dc.subjectITSen
dc.subjectCAVen
dc.subjectVANETen
dc.subjectsmart citiesen
dc.subjectenvironmental applicationsen
dc.subjectvehicular networksen
dc.subjectV2Ven
dc.subjectV2Ien
dc.titleDevelopment and Evaluation of a Cellular Vehicle-to-Everything Enabled Energy-Efficient Dynamic Routing Applicationen
dc.title.serialSensorsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors-23-02314-v3.pdf
Size:
2.18 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: