Moving Towards an Improved Liquefaction Hazard Framework: Lessons Resulting From the 2010-2011 Canterbury, New Zealand, Earthquake Sequence

dc.contributor.authorMaurer, Bretten
dc.contributor.committeechairGreen, Russell A.en
dc.contributor.committeememberLeon, Roberto T.en
dc.contributor.committeememberRodriguez-Marek, Adrianen
dc.contributor.committeememberChapman, Martin C.en
dc.contributor.departmentCivil and Environmental Engineeringen
dc.date.accessioned2016-10-25T08:00:44Zen
dc.date.available2016-10-25T08:00:44Zen
dc.date.issued2016-10-24en
dc.description.abstractThe 2010-2011 Canterbury, New Zealand, Earthquake Sequence (CES) resulted in a liquefaction dataset of unprecedented size and quality, presenting a truly unique opportunity to assess and improve the efficacy of liquefaction-analytics in the field. Towards this end, the study presented herein develops and analyzes a database of 10,000 high-quality liquefaction case histories resulting from the CES. The objectives of these analyses are varied, but underlying each is the desire to more accurately assess liquefaction hazard for civil infrastructure (i.e., to predict both the occurrence and damage-potential of soil liquefaction). Major contributions from this work include, but are not limited to: (1) the Liquefaction Potential Index (LPI), the state-of-practice framework for assessing liquefaction hazard, is shown to produce erroneous predictions for a significant percentage of the assessed case histories; (2) the cause of poor predictions is rigorously investigated and specific shortcomings of the LPI framework are identified; (3) based on the limitations identified, and using insights from historical data, a revised liquefaction hazard framework is developed; and (4) the revised framework is shown to assess liquefaction hazard more efficiently relative to both LPI and a competing alternative framework newly proposed in the literature. Ultimately, significant room for improvement remains with respect to accurate assessment of liquefaction hazard. The findings presented in this dissertation thus form the basis for future development of a further-improved framework. Moreover, a methodology is proposed by which improvements can be measured in a standardized and objective manner.en
dc.description.abstractgeneralSoil liquefaction is a common cause of ground failure during earthquakes and is directly responsible for tremendous damage to civil infrastructure. Manifestations of liquefaction include the occurrence of sand blows and lateral spread failures, settlement and tilting of structures, cracking of pavements, and failure of buried lifelines due to flotation or differential settlements, among others. These effects were vividly displayed during the 2010-2011 Canterbury, New Zealand, Earthquake Sequence (CES), which resulted in a liquefaction dataset of unprecedented size and quality, presenting a truly unique opportunity to advance the science of liquefaction hazard. Towards this end, the study presented herein develops and analyzes a database of 10,000 high-quality liquefaction case histories resulting from the CES. The objectives of these analyses are varied, but underlying each is the desire to more accurately assess liquefaction hazard for civil infrastructure (i.e., to predict both the occurrence and damage-potential of soil liquefaction). Major contributions from this work include, but are not limited to: (1) the Liquefaction Potential Index (LPI), the state-of-practice framework for assessing liquefaction hazard, is shown to produce erroneous predictions for a significant percentage of the assessed case histories; (2) the cause of poor predictions is rigorously investigated and specific shortcomings of the LPI framework are identified; (3) based on the limitations identified, and using insights from historical data, a revised liquefaction hazard framework is developed; and (4) the revised framework is shown to assess liquefaction hazard more efficiently relative to both LPI and a competing alternative framework newly proposed in the literature. Ultimately, significant room for improvement remains with respect to accurate assessment of liquefaction hazard. The findings presented in this dissertation thus form the basis for future development of a further-improved framework.en
dc.description.degreePh. D.en
dc.format.mediumETDen
dc.identifier.othervt_gsexam:8976en
dc.identifier.urihttp://hdl.handle.net/10919/73322en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectearthquakeen
dc.subjectNew Zealanden
dc.subjectsoil liquefactionen
dc.subjecthazard assessmenten
dc.titleMoving Towards an Improved Liquefaction Hazard Framework: Lessons Resulting From the 2010-2011 Canterbury, New Zealand, Earthquake Sequenceen
dc.typeDissertationen
thesis.degree.disciplineCivil Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Maurer_B_D_2016.pdf
Size:
12.46 MB
Format:
Adobe Portable Document Format