Solid-state additive manufacturing of shape-memory ceramic reinforced composites

dc.contributor.authorErb, Donald J.en
dc.contributor.authorGotawala, Nikhilen
dc.contributor.authorYu, Hang Z.en
dc.date.accessioned2026-01-06T15:45:34Zen
dc.date.available2026-01-06T15:45:34Zen
dc.date.issued2026-01en
dc.description.abstractWe report a solid-state additive manufacturing route for producing shape-memory ceramic (Zr<sub>0.88</sub>Ce<sub>0.12</sub>O<sub>2</sub>) reinforced metal matrix composites. Using additive friction stir deposition, we implement two feedstock engineering strategies: (i) pre-mixing of powders using a Cu matrix and (ii) hole-pattern drilling using an Al-Mg-Si matrix, where the specific matrix materials are chosen for their distinct shear flow behaviors. The process yields fully dense composites with uniform particle dispersion (20 vol%) and dynamically recrystallized metal matrices. The severe thermomechanical processing conditions also reduce the ceramic particle size, resulting in unique composite microstructures unattainable by alternative processing routes. The as-printed composites can withstand high compressive loads without cracking and retain functionality enabled by thermally and mechanically triggered martensitic transformations. Notably, for the first time, stress-induced martensitic transformation (tetragonal to monoclinic) is observed in bulk-scale composites—but it is only present in the Cu matrix composite, not the Al-Mg-Si counterpart. Micromechanics modeling attributes this contrast to differences in the load transfer and strain hardening capabilities. Complementary to global transformation characterization, Raman mapping reveals that transformation typically initiates at the particle-matrix interface. Together, these results establish a potential pathway for scalable manufacturing of multi-functional metal–shape memory ceramic composites with tunable microstructures and transformation responses.en
dc.description.versionAccepted versionen
dc.format.mimetypeapplication/pdfen
dc.identifier101152 (Article number)en
dc.identifier.doihttps://doi.org/10.1016/j.mser.2025.101152en
dc.identifier.issn0927-796Xen
dc.identifier.orcidYu, Hang [0000-0002-7629-9577]en
dc.identifier.orcidGotawala, Nikhil [0000-0001-5411-5135]en
dc.identifier.urihttps://hdl.handle.net/10919/140602en
dc.identifier.volume168en
dc.language.isoenen
dc.publisherElsevieren
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectShape memory ceramicsen
dc.subjectadditive friction stir depositionen
dc.subjectmetal matrix compositesen
dc.subjectstress-induced martensitic transformationen
dc.subjectinterface chemical reactionen
dc.subjectRaman spectroscopy mappingen
dc.titleSolid-state additive manufacturing of shape-memory ceramic reinforced compositesen
dc.title.serialMaterials Science and Engineering: R: Reportsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Engineeringen
pubs.organisational-groupVirginia Tech/Engineering/Materials Science and Engineeringen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Engineering/COE T&R Facultyen
pubs.organisational-groupVirginia Tech/Post-docsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
_ Manuscript_Erb_Revison 2_11.15.2025.pdf
Size:
1.91 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: