Solid-state additive manufacturing of shape-memory ceramic reinforced composites
| dc.contributor.author | Erb, Donald J. | en |
| dc.contributor.author | Gotawala, Nikhil | en |
| dc.contributor.author | Yu, Hang Z. | en |
| dc.date.accessioned | 2026-01-06T15:45:34Z | en |
| dc.date.available | 2026-01-06T15:45:34Z | en |
| dc.date.issued | 2026-01 | en |
| dc.description.abstract | We report a solid-state additive manufacturing route for producing shape-memory ceramic (Zr<sub>0.88</sub>Ce<sub>0.12</sub>O<sub>2</sub>) reinforced metal matrix composites. Using additive friction stir deposition, we implement two feedstock engineering strategies: (i) pre-mixing of powders using a Cu matrix and (ii) hole-pattern drilling using an Al-Mg-Si matrix, where the specific matrix materials are chosen for their distinct shear flow behaviors. The process yields fully dense composites with uniform particle dispersion (20 vol%) and dynamically recrystallized metal matrices. The severe thermomechanical processing conditions also reduce the ceramic particle size, resulting in unique composite microstructures unattainable by alternative processing routes. The as-printed composites can withstand high compressive loads without cracking and retain functionality enabled by thermally and mechanically triggered martensitic transformations. Notably, for the first time, stress-induced martensitic transformation (tetragonal to monoclinic) is observed in bulk-scale composites—but it is only present in the Cu matrix composite, not the Al-Mg-Si counterpart. Micromechanics modeling attributes this contrast to differences in the load transfer and strain hardening capabilities. Complementary to global transformation characterization, Raman mapping reveals that transformation typically initiates at the particle-matrix interface. Together, these results establish a potential pathway for scalable manufacturing of multi-functional metal–shape memory ceramic composites with tunable microstructures and transformation responses. | en |
| dc.description.version | Accepted version | en |
| dc.format.mimetype | application/pdf | en |
| dc.identifier | 101152 (Article number) | en |
| dc.identifier.doi | https://doi.org/10.1016/j.mser.2025.101152 | en |
| dc.identifier.issn | 0927-796X | en |
| dc.identifier.orcid | Yu, Hang [0000-0002-7629-9577] | en |
| dc.identifier.orcid | Gotawala, Nikhil [0000-0001-5411-5135] | en |
| dc.identifier.uri | https://hdl.handle.net/10919/140602 | en |
| dc.identifier.volume | 168 | en |
| dc.language.iso | en | en |
| dc.publisher | Elsevier | en |
| dc.rights | In Copyright | en |
| dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
| dc.subject | Shape memory ceramics | en |
| dc.subject | additive friction stir deposition | en |
| dc.subject | metal matrix composites | en |
| dc.subject | stress-induced martensitic transformation | en |
| dc.subject | interface chemical reaction | en |
| dc.subject | Raman spectroscopy mapping | en |
| dc.title | Solid-state additive manufacturing of shape-memory ceramic reinforced composites | en |
| dc.title.serial | Materials Science and Engineering: R: Reports | en |
| dc.type | Article - Refereed | en |
| dc.type.dcmitype | Text | en |
| pubs.organisational-group | Virginia Tech | en |
| pubs.organisational-group | Virginia Tech/Engineering | en |
| pubs.organisational-group | Virginia Tech/Engineering/Materials Science and Engineering | en |
| pubs.organisational-group | Virginia Tech/All T&R Faculty | en |
| pubs.organisational-group | Virginia Tech/Engineering/COE T&R Faculty | en |
| pubs.organisational-group | Virginia Tech/Post-docs | en |