VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Robust Medium-Voltage Distribution System State Estimation using Multi-Source Data

dc.contributor.authorZhao, Junboen
dc.contributor.authorHuang, Canen
dc.contributor.authorMili, Lamine M.en
dc.contributor.authorZhang, Yingchenen
dc.contributor.authorMin, Liangen
dc.date.accessioned2024-01-22T14:51:08Zen
dc.date.available2024-01-22T14:51:08Zen
dc.date.issued2020en
dc.description.abstractDue to the lack of sufficient online measurements for distribution system observability, pseudo-measurements from short-term load or distributed renewable energy resources (DERs) forecasting are used. However, the accuracy of them is low and thus significantly limits the performance of distribution system state estimation (DSSE). In this paper, a robust DSSE that integrates multi-source measurement data is proposed. Specifically, the historical low-voltage (LV) side smart meters are used to forecast load and DERs injections via the support vector machine (SVM) with optimally tuned parameters. By contrast, the online smart meters at LV side are utilized to derive equivalent power injections at the MV/LV transformers, yielding more accurate pseudo-measurements compared to the forecasted injections. Furthermore, to deal with bad data caused by communication loss, instrumental errors and cyber attacks, robust DSSE that relies on generalized maximum-likelihood (GM)-estimation criterion is developed. The projection statistics are developed to adjust the weights of each measurement, leading to better balance between pseudo- and real-time measurements. Numerical results conducted on modified IEEE 33-bus system with DG integration demonstrate the effectiveness and robustness of the proposed method.en
dc.description.versionPublished versionen
dc.format.extent5 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1109/isgt45199.2020.9087787en
dc.identifier.isbn9781728131030en
dc.identifier.issn2167-9665en
dc.identifier.orcidMili, Lamine [0000-0001-6134-3945]en
dc.identifier.urihttps://hdl.handle.net/10919/117515en
dc.language.isoenen
dc.publisherIEEEen
dc.rightsPublic Domain (U.S.)en
dc.rights.urihttp://creativecommons.org/publicdomain/mark/1.0/en
dc.subjectDistribution system state estimationen
dc.subjectmachine learningen
dc.subjectpseudo measurementen
dc.subjectreal-time measurementen
dc.subjectsmart meteren
dc.subjectLOADen
dc.titleRobust Medium-Voltage Distribution System State Estimation using Multi-Source Dataen
dc.title.serial2020 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT)en
dc.typeConference proceedingen
dc.type.dcmitypeTexten
dc.type.otherProceedings Paperen
dc.type.otherBook in seriesen
pubs.finish-date2020-02-20en
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Electrical and Computer Engineeringen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen
pubs.start-date2020-02-17en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Robust_Medium-Voltage_Distribution_System_State_Estimation_using_Multi-Source_Data.pdf
Size:
433.14 KB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: